The effectiveness of chemotherapy in breast cancer treatment can be increased using a combinatorial agent. Hesperetin has been reported to increase the sensitivity of doxorubicin in breast cancer cells; however, the underlying molecular mechanism remains unclear. This present study was conducted to identify the potential target and molecular mechanism of hesperetin in circumventing breast cancer chemoresistance using a bioinformatics approach. Microarray data obtained after hesperetin treatment in the NCI-60 cell line panel collection were retrieved from the COMPARE public library. These data were then compared with the list of the regulatory genes of breast cancer resistance obtained from PubMed and further analyzed for gene ontology and KEGG pathway enrichment, as well as protein-protein interaction network. A Venn diagram of COMPARE microarray data and the gene list from PubMed generated 56 genes (potential therapeutic target genes/PTTGs). These PTTGs participate in the biological process of the JAK-STAT cascade and are located in the nucleus, exert a molecular function in protein serine/threonine kinase activity, and regulate the erbB signaling pathway. Drug association analysis demonstrated that both hesperetin and the erbB receptor inhibitors, i.e., monoclonal antibody and tyrosine kinase inhibitor, target the same mRNA expression. Furthermore, results of the molecular docking study revealed that hesperetin is a promising inhibitor that targets ABL1, DNMT3B, and MLH1 due to the similarity of binding properties with its native ligand. In conclusion, the possible pathways and the regulatory genes identified in this study may offer new insights into the mechanism by which hesperetin overcomes breast cancer chemoresistance. A combinatorial therapy with hesperetin targeting ABL1, DNMT3B, and MLH1 may be effective in circumventing chemoresistance in breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-019-10003-2DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
molecular mechanism
12
mechanism hesperetin
12
cancer chemoresistance
12
hesperetin
8
microarray data
8
regulatory genes
8
abl1 dnmt3b
8
dnmt3b mlh1
8
breast
7

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!