Over the years, a broad spectrum of applications of the radionuclide holmium-166 as a medical isotope has been established. The isotope holmium-166 is attractive as it emits high-energy beta radiation which can be used for a therapeutic effect and gamma radiation which can be used for nuclear imaging purposes. Furthermore, holmium-165 can be visualized by MRI because of its paramagnetic properties and by CT because of its high density. Since holmium-165 has a natural abundance of 100%, the only by-product is metastable holmium-166 and no costly chemical purification steps are necessary for production of nuclear reactor derived holmium-166. Several compounds labelled with holmium-166 are now used in patients, such Ho-labelled microspheres for liver malignancies, Ho-labelled chitosan for hepatocellular carcinoma (HCC) and [Ho]Ho DOTMP for bone metastases. The outcomes in patients are very promising, making this isotope more and more interesting for applications in interventional oncology. Both drugs as well as medical devices labelled with radioactive holmium are used for internal radiotherapy. One of the treatment possibilities is direct intratumoural treatment, in which the radioactive compound is injected with a needle directly into the tumour. Numerous other applications have been developed, like patches for treatment of skin cancer and holmium labelled antibodies and peptides. The second major application that is currently clinically applied is selective internal radiation therapy (SIRT, also called radioembolization), a novel treatment option for liver malignancies. This review discusses medical drugs and medical devices based on the therapeutic radionuclide holmium-166.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682843 | PMC |
http://dx.doi.org/10.1186/s41181-019-0066-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!