Zoogloea oleivorans, capable of using toluene as a sole source of carbon and energy, was earlier found to be an active degrader under microaerobic conditions in aquifer samples. To uncover the genetic background of the ability of microaerobic toluene degradation in Z. oleivorans, the whole-genome sequence of the type strain Buc was revealed. Metatranscriptomic sequence reads, originated from a previous SIP study on microaerobic toluene degradation, were mapped on the genome. The genome (5.68 Mb) had a mean G + C content of 62.5%, 5005 protein coding gene sequences and 80 RNA genes. Annotation predicted that 66 genes were involved in the metabolism of aromatic compounds. Genome analysis revealed the presence of a cluster with genes coding for a multicomponent phenol-hydroxylase system and a complete catechol meta-cleavage pathway. Another cluster flanked by mobile-element protein coding genes coded a partial catechol meta-cleavage pathway including a subfamily I.2.C-type extradiol dioxygenase. Analysis of metatranscriptomic data of a microaerobic toluene-degrading enrichment, containing Z . oleivorans as an active-toluene degrader revealed that a toluene dioxygenase-like enzyme was responsible for the ring-hydroxylation, while enzymes of the partial catechol meta-cleavage pathway coding cluster were responsible for further degradation of the aromatic ring under microaerobic conditions. This further advances our understanding of aromatic hydrocarbon degradation between fully oxic and strictly anoxic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012976 | PMC |
http://dx.doi.org/10.1007/s00203-019-01743-8 | DOI Listing |
DNA Res
January 2025
Biochemistry Research Lab (Rm216), Dept. of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine. Trinidad and Tobago - West Indies.
Bacteria that are chronically exposed to high levels of pollutants demonstrate genomic and corresponding metabolic diversity that complement their strategies for adaptation to hydrocarbon-rich environments. Whole genome sequencing was carried out to infer functional traits of Serratia marcescens SMTT recovered from soil contaminated with crude oil. The genome size (Mb) was 5,013,981 with a total gene count of 4,842.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071000, China. Electronic address:
Front Microbiol
August 2024
Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Effective bioremediation of a phenol-polluted environment harnesses microorganisms' ability to utilize hazardous compounds as beneficial degraders. In the present study, a consortium consisting of 15 bacterial strains was utilized. The current study aims to monitor the phenol biodegradation pathway.
View Article and Find Full Text PDFBiol Futur
September 2024
Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary.
Bioresour Technol
August 2024
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
Co-metabolism is a promising method to optimize the biodegradation of p-Chloroaniline (PCA). In this study, Pseudomonas sp. CA-1 could reduce 76.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!