Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism of their multiple color emission.

Lab Chip

The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Published: December 2019

Carbon dots with different emission fluorescence have a great number of potential applications for various areas from in vitro imaging and biotherapy, due to the good biosafety of red fluorescent CDs, to efficient ion detection and photocatalysis, due to the excellent photoluminescence properties of blue fluorescent carbon dots. Traditional methods for the synthesis of full-spectrum carbon dots require 24 h of synthesis and complex column chromatography. In this paper, a facile and efficient microfluidic method to continuously synthesize small and uniform carbon dots with full-spectrum emission fluorescence is developed for the first time. The synthesis process could be reduced to 20 minutes. Through XPS analysis and DFT calculations, it is quantitatively revealed that the number of primary amino groups determines the energy gap of the carbon dots and thus determines the fluorescence emission wavelength of the carbon dots. Applications for precise Fe detection and in vitro bio-imaging were successfully implemented, showing great potential application value of the carbon dots.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00683dDOI Listing

Publication Analysis

Top Keywords

carbon dots
32
carbon
8
dots
8
emission fluorescence
8
continuous synthesis
4
synthesis carbon
4
dots full
4
full spectrum
4
fluorescence
4
spectrum fluorescence
4

Similar Publications

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.

View Article and Find Full Text PDF

Liquid bidentate ligand for full ligand coverage towards efficient near-infrared perovskite quantum dot LEDs.

Light Sci Appl

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China.

Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!