Evolution and diversity of transposable elements in fish genomes.

Sci Rep

Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China.

Published: October 2019

Transposable elements (TEs) are genomic sequences that can move, multiply, and often form sizable fractions of vertebrate genomes. Fish belong to a unique group of vertebrates, since their karyotypes and genome sizes are more diverse and complex, with probably higher diversity and evolution specificity of TE. To investigate the characteristics of fish TEs, we compared the mobilomes of 39 species, and observed significant variation of TE content in fish (from 5% in pufferfish to 56% in zebrafish), along with a positive correlation between fish genome size and TE content. In different classification hierarchies, retrotransposons (class), long terminal repeat (order), as well as Helitron, Maverick, Kolobok, CMC, DIRS, P, I, L1, L2, and 5S (superfamily) were all positively correlated with fish genome size. Consistent with previous studies, our data suggested fish genomes to not always be dominated by DNA transposons; long interspersed nuclear elements are also prominent in many species. This study suggests CR1 distribution in fish genomes to be obviously regular, and provides new clues concerning important events in vertebrate evolution. Altogether, our results highlight the importance of TEs in the structure and evolution of fish genomes and suggest fish species diversity to parallel transposon content diversification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817897PMC
http://dx.doi.org/10.1038/s41598-019-51888-1DOI Listing

Publication Analysis

Top Keywords

fish genomes
16
fish
10
transposable elements
8
genomes fish
8
fish genome
8
genome size
8
genomes
5
evolution
4
evolution diversity
4
diversity transposable
4

Similar Publications

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

Chinese yam polysaccharide induces the differentiation and natural antibody secretion of IgM B cells to prevent Aeromonas hydrophila infection in grass carp.

Int J Biol Macromol

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. Electronic address:

Chinese yam polysaccharide (CYP) is an effective immunostimulant, however, its efficacy in grass carp, an important commercial fish species in Asia, remains untested. Here, our study evaluated the immunostimulatory effects of CYP on IgM B cells in vitro and on humoral immunity and immune defense against Aeromonas hydrophila infection in vivo. In vitro stimulation experiments showed that CYP could induce the secretion of IgM antibodies, because it could stimulate the proliferation and differentiation of head kidney IgM B cells.

View Article and Find Full Text PDF

Introduction: Resistance to lenvatinib limits the effectiveness of the targeted treatments for HCC. However, the exact mechanism behind this resistance remains elusive. Current research suggests that circular RNA (circRNA) is pivotal in mediating drug resistance during targeted treatments.

View Article and Find Full Text PDF

Chromosome-scale genomes of ecologically and economically important rabbitfish Siganus guttatus and Siganus oramin.

Genomics

January 2025

Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China. Electronic address:

Siganus guttatus and Siganus oramin are two major species that are naturally distributed along the Eastern Pacific coast and possess considerable ecological and economic value. Here, we present the construction and comparative analysis of the chromosome-level genomes of these two Siganus species. Employing a hybrid assembly strategy, we partitioned and independently assembled the PacBio, Illumina and Hi-C reads of S.

View Article and Find Full Text PDF

Animal models of kabuki syndrome and their applicability to novel drug discovery.

Expert Opin Drug Discov

January 2025

Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!