Traumatic brain injuries (TBIs) are a leading cause of death and disability. Additionally, growing evidence suggests a link between TBI-induced neuroinflammation and neurodegenerative disorders. Treatments for TBI patients are limited, largely focused on rehabilitation therapy, and ultimately, fail to provide long-term neuroprotective or neurorestorative benefits. Because of the prevalence of TBI and lack of viable treatments, new therapies are needed which can promote neurological recovery. Cell-based treatments are a promising avenue because of their potential to provide multiple therapeutic benefits. Cell-based therapies can promote neuroprotection via modulation of inflammation and promote neurorestoration via induction of angiogenesis and neurogenesis. Neural stem/progenitor cell transplantations have been investigated in preclinical TBI models for their ability to directly contribute to neuroregeneration, form neural-like cells, and improve recovery. Mesenchymal stem cells (MSCs) have been investigated in clinical trials through multiple different routes of administration. Intravenous administration of MSCs appears most promising, demonstrating a robust safety profile, correlation with neurological improvements, and reductions in systemic inflammation following TBI. While still preliminary, evidence suggests cell-based therapies may become a viable treatment for TBI based on their ability to promote neuroregeneration and reduce inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826445PMC
http://dx.doi.org/10.3390/brainsci9100270DOI Listing

Publication Analysis

Top Keywords

cell-based therapies
12
traumatic brain
8
brain injuries
8
evidence suggests
8
tbi
5
efficacy cell-based
4
therapies
4
therapies traumatic
4
injuries traumatic
4
injuries tbis
4

Similar Publications

A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury.

Acta Pharm Sin B

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.

View Article and Find Full Text PDF

Tissue-Engineered Therapeutics for Lymphatic Regeneration: Solutions for Myocardial Infarction and Secondary Lymphedema.

Adv Healthc Mater

January 2025

Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX, 77843-3120, USA.

The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target.

View Article and Find Full Text PDF

Understanding the dynamics of membrane protein-ligand interactions within a native lipid bilayer is a major goal for drug discovery. Typically, cell-based assays are used, however, they are often blind to the effects of protein modifications. In this study, using the archetypal G protein-coupled receptor rhodopsin, we found that the receptor and its effectors can be released directly from retina rod disc membranes using infrared irradiation in a mass spectrometer.

View Article and Find Full Text PDF

Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease.

ACS Biomater Sci Eng

January 2025

Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.

View Article and Find Full Text PDF

Background: Cerebral palsy (CP), traumatic spinal cord injury (SCI), and muscular dystrophy (MD), among the various other neurological disorders, are major global health problems because they are chronic disorders with no curative treatments at present. Current interventions aim to relieve symptoms alone and therefore emphasize the necessity for new approaches.

Objective: This study aims to assess the safety and efficacy of autologous bone marrow-derived mononuclear cell (BM-MNC) therapy in patients with CP, traumatic SCI, and MD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!