The calcium ion (Ca) isa highly versatile intracellular signal messenger regulating many different cellular functions. It is important to design probes with good fluorescence and two-photon (TP) active cross-sections (Φ) to explore the concentration distribution of Ca. In this manuscript, a novel TP fluorescence calcium probe (BAPTAVP) with positive charges, based on the classical Ca indicator of BAPTA (1,2-bis(2-aminophenoxy)-ethane--tetra acetic acid), and a conjugated polymer (PCBMB) with negative charges were designed and synthesized. The results from transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and the zeta potential (ZP) showed that nanoparticles were obtained by the self-assembly of PCBMB and BAPTAVP. Moreover, the fluorescence properties of BAPTAVP were effectively improved by fluorescence resonance energy transfer (FRET) with PCBMB and attenuating the intramolecular charge transfer (ICT) after the addition of Ca. The quantum yield and Φ of PCBMB-BAPTAVP increased by about four and six times in comparison to those of BAPTAVP, respectively. The TP fluorescence imaging experiments indicated that the PCBMB-BAPTAVP system could effectively detect Ca in living cells with high sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835751PMC
http://dx.doi.org/10.3390/polym11101643DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
8
calcium ion
8
conjugated polymer
8
baptavp fluorescence
8
fluorescence
7
enhanced two-photon
4
two-photon fluorescence
4
fluorescence fluorescence
4
imaging novel
4
novel probe
4

Similar Publications

Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants' challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample.

View Article and Find Full Text PDF

Purpose: A relative afferent pupillary defect (RAPD) is a characteristic clinical sign of optic neuritis (ON). Here, we systematically evaluated ultrasound pupillometry (UP) for the detection of an RAPD in patients with ON, including a comparison with infrared video pupillometry (IVP), the gold standard for objective pupillometry.

Materials And Methods: We enrolled 40 patients with acute (n = 9) or past (n = 31) ON (ON+), 31 patients with multiple sclerosis (MS) without prior ON, and 50 healthy controls (HC) in a cross-sectional observational study.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.

Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.

View Article and Find Full Text PDF

This study addresses the critical issue of irreversible oxidation in hypochlorite (ClO⁻) sensing by a phenothiazine-based compound, which typically leads to the probe's degradation and loss of functionality. We introduce a novel fluorescence probe, (2-(5-(10 H-phenothiazin-10-yl)thiophen-2-yl)-1 H-benzo[d]imidazol-6-yl)(phenyl)methanone (PTH-BP), specifically designed to enhance ClO⁻ detection efficiency. PTH-BP exhibits strong aggregation-induced emission (AIE), emitting deep orange fluorescence at 620 nm with a large Stokes shift of 195 nm, and achieves an impressive detection limit of 1 nM in ACN/PBS buffer solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!