Resistance Mechanisms to CAR T-Cell Therapy and Overcoming Strategy in B-Cell Hematologic Malignancies.

Int J Mol Sci

Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea.

Published: October 2019

AI Article Synopsis

  • CAR T-cell therapy has demonstrated effectiveness against blood cancers, particularly targeting the CD19 marker found on B cells and most B-cell malignancies.
  • Recent evidence highlights limitations of this treatment, including issues with patient relapse due to factors like low CAR T-cell persistence and mutations that evade detection.
  • Innovative strategies, such as dual-targeting therapies and advanced CAR T-cell designs, are being explored to combat these resistance mechanisms and improve patient outcomes.

Article Abstract

Chimeric antigen receptor (CAR) T-cell therapy has shown promising clinical impact against hematologic malignancies. CD19 is a marker on the surface of normal B cells as well as most B-cell malignancies, and thus has a role as an effective target for CAR T-cell therapy. In numerous clinical data, successes with cell therapy have provided anticancer therapy as a potential therapeutic option for patients who are resistant to standard chemotherapies. However, recent growing evidence showed the limitations of the treatment such as antigen-positive relapse due to poor CAR T-cell persistence and antigen-negative relapses associated with CAR-driven mutations, alternative splicing, epitope masking, low antigen density, and lineage switching. The understanding of the resistance mechanisms to the cell therapy has developed novel potential treatment strategies, including dual-targeting therapy (dual and tandem CAR), and armored and universal CAR T-cell therapies. In this review, we provide an overview of resistance mechanisms to CD19 CAR T-cell therapy in B-cell malignancies and also review therapeutic strategies to overcome these resistances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834308PMC
http://dx.doi.org/10.3390/ijms20205010DOI Listing

Publication Analysis

Top Keywords

car t-cell
24
t-cell therapy
16
resistance mechanisms
12
therapy
8
hematologic malignancies
8
b-cell malignancies
8
cell therapy
8
car
7
t-cell
6
mechanisms car
4

Similar Publications

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Cancer immunotherapy in progress-an overview of the past 130 years.

Int Immunol

January 2025

Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.

Since the first approval of an immune-checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen-receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy.

View Article and Find Full Text PDF

Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below.

View Article and Find Full Text PDF

Using immunotherapeutic agents like inotuzumab ozogamicin (InO), blinatumomab, or chimeric antigen receptor T (CAR T)-cell therapy in frontline adult B-cell acute lymphoblastic leukemia (B-ALL) therapy is promising. These agents are mostly well tolerated and have different toxicity profiles than conventional chemotherapy, enabling their combination with chemotherapy. Additionally, they have often been shown to overcome the traditional adverse ALL risk features.

View Article and Find Full Text PDF

Advances in cryo-electron microscopy (cryoEM) for structure-based drug discovery.

Expert Opin Drug Discov

January 2025

Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.

Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!