Ultrasonic arrays have been investigated for inspecting the quality of special materials. Unfortunately, non-destructive testing and evaluation (NDT&E) of internal defects in additive manufacturing (AM) materials are difficult due to the anisotropy and the coarse grain. To solve the problem, this paper brings forward research on the inspection of TC18 AM titanium alloy products using an ultrasonic array. Firstly, a three-dimensional acoustic field distribution of different ultrasonic array transducers is established to design an optimal detection solution for an AM titanium alloy. Then, a total focusing method (TFM) for the ultrasonic annular array transducer is proposed and its imaging method is analyzed. Besides, the relation between ultrasonic group velocities in a TC18 AM specimen with different propagating angles is measured using the full matrix capture (FMC) method. Based on the measurements, the anisotropy of the AM titanium alloy is discussed and the TFM algorithm of annular array is optimized as well. Finally, C-scan experiments are conducted on the specimen with a height of 55 mm using the linear ultrasonic array transducer of the conventional focusing method and the TFM of annular array transducer, respectively. The results show that the TFM of annular array has higher accuracy in quantifying the defects of flat bottom holes and transverse holes with a diameter of 0.8 mm. In addition, the detection results of different forming directions are analyzed and the 3D imaging of defects in the specimen is realized based on FMC data. The TFM of annular array is an innovative ultrasonic testing technology with high resolution for AM titanium alloy products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833486 | PMC |
http://dx.doi.org/10.3390/s19204371 | DOI Listing |
Int Microbiol
January 2025
Department of Orthopedics and Traumatology, Ankara University School of Medicine, Ankara, Turkey.
Purpose: The most frequently used surgical procedures for periprosthetic joint infections (PJIs) are debridement, antibiotics, and implant retention (DAIR), as well as single- or two-stage revision arthroplasty. The choice of surgery is made depending on the full maturation of the biofilm layer. The purpose of this study was to evaluate the biofilm formation and microbial growth using common PJI-causing agents and compare its development on the implant surface.
View Article and Find Full Text PDFPLoS One
January 2025
School of Mechanical Engineering, Liaoning Technical University, Fuxin, China.
Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality.
View Article and Find Full Text PDFPLoS One
January 2025
School of Petrochemical Engineering, Changzhou University, Changzhou, China.
The influence of varying hydrogen content on the microstructure, mechanical properties, and fracture behavior of the metastable β titanium alloy TB8 after hydrogen charging has been investigated in this study. Several characterization methods, including optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were employed to comprehensively analyze the alloy. The results show that with the addition of hydrogen, hydrogen mainly accumulated at grain boundaries in the form of hydrides.
View Article and Find Full Text PDFJ Spine Surg
December 2024
Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, AUS.
Background: Implant fixation is often the cornerstone of musculoskeletal surgical procedures performed to provide bony fixation and/or fusion. The aim of this study was to evaluate how different design features and manufacturing methods influence implant osseointegration and mechanical properties associated with fixation in a standardized model in cancellous bone of adult sheep.
Methods: We evaluated the performance of three titanium alloy implants: (A) iFuse-TORQ implant; (B) Fenestrated Sacroiliac Device; and (C) Standard Cancellous Bone Screw in the cancellous bone of the distal femur and proximal tibia in 8 sheep.
J Mater Sci Mater Med
January 2025
Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!