Quantum spin Hall insulators make up a class of two-dimensional materials with a finite electronic band gap in the bulk and gapless helical edge states. In the presence of time-reversal symmetry, [Formula: see text] topological order distinguishes the topological phase from the ordinary insulating one. Some of the phenomena that can be hosted in these materials, from one-dimensional low-dissipation electronic transport to spin filtering, could be promising for many technological applications in the fields of electronics, spintronics, and topological quantum computing. Nevertheless, the rarity of two-dimensional materials that can exhibit nontrivial [Formula: see text] topological order at room temperature hinders development. Here, we screen a comprehensive database we recently identified of 1825 monolayers that can be exfoliated from experimentally known compounds to search for novel quantum spin Hall insulators. Using density-functional and many-body perturbation theory simulations, we identify 13 monolayers that are candidates for quantum spin Hall insulators including high-performing materials such as AsCuLi and (platinum) jacutingaite (PtHgSe). We also identify monolayer PdHgSe (palladium jacutingaite) as a novel Kane-Mele quantum spin Hall insulator and compare it with platinum jacutingaite. A handful of promising materials are mechanically stable and exhibit [Formula: see text] topological order, either unperturbed or driven by small amounts of strain. Such screening highlights a relative abundance of [Formula: see text] topological order of around 1% and provides an optimal set of candidates for experimental efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b02689 | DOI Listing |
Sci Rep
January 2025
University of São Paulo, ICMC, São Carlos, 13566-590, Brazil.
Identifying driver genes is crucial for understanding oncogenesis and developing targeted cancer therapies. Driver discovery methods using protein or pathway networks rely on traditional network science measures, focusing on nodes, edges, or community metrics. These methods can overlook the high-dimensional interactions that cancer genes have within cancer networks.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
We report the synthesis, crystal structure, and magnetic properties of a new Kitaev honeycomb cobaltate, KCoAsO, which crystallizes in two distinct forms: P2/c and R[Formula: see text] space groups. Magnetic measurements reveal ordering temperatures of ~ 14 K for the P2/c structure and ~ 10.5 K for the R[Formula: see text] structure.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and AI, SR University, Warangal, Telangana, India.
One of the most fatal diseases that affect people is skin cancer. Because nevus and melanoma lesions are so similar and there is a high likelihood of false negative diagnoses challenges in hospitals. The aim of this paper is to propose and develop a technique to classify type of skin cancer with high accuracy using minimal resources and lightweight federated transfer learning models.
View Article and Find Full Text PDFProc Biol Sci
January 2025
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
In animals, metabolic rates during ontogeny often scale differently from the way they do in cross-species or population comparisons, with near-isometric scaling patterns more often observed during juvenile growth. In multiple social insect taxa, colony metabolic rate scales hypometrically across species or populations at the same developmental stage, but metabolic patterns during ontogeny have not been examined for any social insect species. We performed the first ontogenetic study of social metabolic scaling in harvester ant colonies () over 3.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield AL9 7TA, UK.
Swimming and flying animals produce thrust with oscillating fins, flukes or wings. The relationship between frequency , amplitude and forward velocity can be described with a Strouhal number , where = 2/, where animals are observed to cruise with [Formula: see text]-0.4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!