A flexible, room-temperature and solution-processible copper nanowire based transparent electrode protected by reduced graphene oxide exhibiting high performance and improved stability.

Nanotechnology

Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China. College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.

Published: January 2020

Advances in flexible electronic and optoelectronic devices have caused higher requirements for fabricating high-performance and low cost flexible transparent conductive electrodes (TCEs). Copper nanowires (Cu NWs) possess excellent electrical and optical properties, but the large contact resistance and poor stability limit their practical application in optoelectronic devices. In this work, we report a robust, convenient and environment-friendly method to assemble copper nanowires/reduced graphene oxide (Cu NWs/rGO) TCEs with enhanced conductivity, flexibility and stability at room temperature. The NaBH treatment was used to remove the organics and oxides on the surface of Cu NWs, and the graphene oxide (GO) capping layer was also effectively reduced at the same time. The best Cu NWs/rGO composite TCEs show a good optical-electrical performance with a sheet resistance of ∼50 Ω/sq and transmittance of 83% as well as superior mechanical flexibility. The oxidation resistance of Cu NWs in normal environment and even at a relatively high temperature has also been greatly improved. Additionally, the Cu NWs/rGO TCEs based heaters presented high saturation temperature and rapid response time under a low voltage. The high-performance composite Cu NWs TCEs with good stability are expected to be applied in various types of flexible optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab4c03DOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
optoelectronic devices
12
nws/rgo tces
8
tces good
8
tces
5
flexible
4
flexible room-temperature
4
room-temperature solution-processible
4
solution-processible copper
4
copper nanowire
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!