Modular Design of Peptide- or DNA-Modified AIEgen Probes for Biosensing Applications.

Acc Chem Res

Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences, Wuhan 430074 , P. R. China.

Published: November 2019

Fluorophore probes are widely used for bioimaging in cells, tissues, and animals as well as for monitoring of multiple biological processes in complex environments. Such imaging properties allow scientists to make direct visualizations of pathological events and cellular targets. Conventional fluorescent molecules have been developed for several decades and achieved great successes, but their emissions are often weakened or quenched at high concentrations that might suffer from the aggregation-caused quenching (ACQ) effect, which reduces the efficiencies of their applications. In contrast to the ACQ effect, aggregation-induced emission (AIE) luminogens (AIEgens) display much higher fluorescence in aggregated states and possess various advantages such as low background, long-term tracking ability, and strong resistance to photobleaching. Therefore, AIEgens are employed as unique fluorescence molecules and building blocks for biosensing applications in the fields of ions, amino acids, carbohydrates, DNAs/RNAs, peptides/proteins, cellular organelles, cancer cells, bacteria, and so on. Quite a few of the above biosensing missions are accomplished by modular peptide-modified AIEgen probes (MPAPs) or modular DNA-modified AIEgen probes (MDAPs) because of the multiple capabilities of peptide and DNA modules, including solubility, biocompatibility, and recognition. Meanwhile, both electrostatic interactions and coupling reactions could provide efficient methods to construct different MPAPs and MDAPs, finally resulting in a large variety of biosensing probes. Those probes exhibit leading features of detecting nucleic acids or proteins and imaging mass biomolecules. For example, under modular design, peptide modules possessing versatile recognition abilities enable MPAPs to detect numerous targets, such as integrin αβ, aminopeptidase N, MMP-2, MPO, HO, and so forth; MDAP could allow the imaging of mRNA in cells and tissue chips, suggesting the diagnostic functions of MDAP in clinical samples. Modular design offers a novel strategy to generate AIEgen-based probes and expedites functional biomacromolecules research. In this vein, here we review the progress on MPAPs and MDAPs in the most recent 10 years and highlight the modular design strategy as well as their advanced biosensing applications including briefly two aspects: (1) detection and (2) imaging. By the use of MPAPs/MDAPs, multiple bioanalytes can be efficiently analyzed at low concentrations and directly visualized through high-contrast and luminous imaging. Compared with MPAPs, the quantities of MDAPs are limited because of the difficult synthesis of long-length DNA strands. In future work, multifunctional of DNA sequences are needed to explore varieties of MDAPs for diverse biosensing purposes. At the end of this Account, some deficiencies and challenges are mentioned for briging more attention to accelerate the development of AIEgen-based probes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.9b00348DOI Listing

Publication Analysis

Top Keywords

modular design
16
aiegen probes
12
biosensing applications
12
dna-modified aiegen
8
probes
8
mpaps mdaps
8
aiegen-based probes
8
modular
6
biosensing
6
imaging
5

Similar Publications

Reconfigurable modular robots can be used in application domains such as exploration, logistics, and outer space. The robots should be able to assemble and work as a single entity to perform a task that requires high throughput. Selecting an optimum assembly position with minimum distance traveled by robots in an obstacle surrounding the environment is challenging.

View Article and Find Full Text PDF

Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression.

View Article and Find Full Text PDF

is a Gram-negative opportunistic pathogen and is a common cause of nosocomial infections. The increasing development of antibiotic resistance in this organism is a global health concern. The clinical isolate AB307-0294 produces a type VI secretion system (T6SS) that delivers three antibacterial effector proteins that give this strain a competitive advantage against other bacteria in polymicrobial environments.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have been exploring the therapeutic use of bacteria for over a century, and recent advancements in synthetic biology have led to the creation of genetically engineered bacteria that can intelligently respond to their environment.
  • These engineered bacteria can sense disease-specific signals and deliver targeted treatments by producing necessary proteins and drugs at diseased sites.
  • The article discusses three key stages in developing these bacteria for clinical use: choosing bacterial strains, designing their sensing systems, and planning how they will be delivered in medical applications for various diseases.
View Article and Find Full Text PDF

Design and Evaluation of 3D-Printed Lattice Structures as High Flow Rate Aerosol Filters.

ACS Appl Eng Mater

December 2024

Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Article Synopsis
  • Aerosol contamination is a significant issue across various sectors, and the study focuses on using 3D-printed open foam-like lattice structures as an efficient solution for filtration.
  • The researchers created and tested four different lattice geometries (Cubic, Kelvin, Octahedron, and Weaire-Phelan) to determine their effectiveness in capturing aerosol particles, finding that filtration performance improves with the specific surface area of the filter design.
  • The study also identified mechanisms of particle deposition and established that 3D-printed lattices can achieve high filtration efficiencies (10-100%) under varying airflow conditions, indicating their potential as customizable and effective aerosol filters while addressing existing production challenges.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!