Designing efficient nonprecious catalysts with pH-universal hydrogen evolution reaction (HER) performance is of importance for boosting water splitting. Herein, a self-template strategy based on Ni-Co-glycerates is developed to prepare bimetallic Ni-Co-P microflowers with ultrathin nanosheet arrays. The highly porous core-shell structure gives rise to affluent mass transfer channels and availably prevents the aggregation of nanosheets, while the ultrathin nanosheets are favorable for producing abundant active sites. Besides, the produced CoP/NiCoP heterostructure in the bimetallic Ni-Co-P catalyst has excellent HER performance in a wide pH range. The as-prepared catalyst shows low potentials of 90, 157, and 121 mV to deliver a current density of 10 mA cm in 0.5 M HSO, 0.5 M PBS, and 1 M KOH solution, respectively. Meanwhile, negligible overpotential decay is achieved in the polarization curves after a long-term stability determination. This work supplies a promising strategy for developing pH-universal HER electrocatalysts based on solid-state metal alkoxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b15194 | DOI Listing |
Micromachines (Basel)
January 2024
Department of Chemical Engineering, National Chung Hsing University, Taichung 402202, Taiwan.
In this study, the successful synthesis of bimetallic nickel/cobalt phosphide nanosheets (Ni-Co-P NSs) via the hydrothermal method and the subsequent high-temperature phosphorization process were both confirmed. Ni-Co-P NSs exhibited excellent electrocatalytic activity for the electrochemical non-enzymatic DA sensing. The surface morphologies and physicochemical properties of Ni-Co-P NSs were characterized by atomic force microscopy (AFM), field-emission scanning (FESEM), field-emission transmission electron microscopy (FETEM), and X-ray diffraction (XRD).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2021
Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt. Electronic address:
Although transition metal hydroxides are promising candidates as advanced supercapattery materials, they suffer from poor electrical conductivity. In this regard, previous studies have typically analyzed separately the impacts of defect engineering at the atomic level and the conversion of hydroxides to phosphides on conductivity and the overall electrochemical performance. Meanwhile, this paper uniquely studies the aforementioned methodologies simultaneously inside an all-in-one simple plasma treatment for nickel cobalt carbonate hydroxide, examines the effect of altering the nickel-to-cobalt ratio in the binder-free defect-engineered bimetallic Ni-Co system, and estimates the respective quantum capacitance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology, Wuhan 430074 , People's Republic of China.
Designing efficient nonprecious catalysts with pH-universal hydrogen evolution reaction (HER) performance is of importance for boosting water splitting. Herein, a self-template strategy based on Ni-Co-glycerates is developed to prepare bimetallic Ni-Co-P microflowers with ultrathin nanosheet arrays. The highly porous core-shell structure gives rise to affluent mass transfer channels and availably prevents the aggregation of nanosheets, while the ultrathin nanosheets are favorable for producing abundant active sites.
View Article and Find Full Text PDFNanoscale
December 2018
State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
High-activity electrocatalysts play a crucial role in energy conversion through splitting water to produce hydrogen. Here we report the synthesis of a bimetallic phosphide of Ni-Co-P coupled with C60 molecules which acts as an electrocatalyst for the hydrogen evolution reaction (HER). Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization reveals that the synthesized C60-decorated Ni-Co-P nanoparticles have an average diameter of ∼4 nm with rich structural defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!