An alkenyl C-H allylation by an exo-palladacycle intermediate is demonstrated, employing unactivated (Z)-alkenes and allyl carbonates. With the use of an 8-aminoquinoline (AQ) derived amide as the directing group, the N,N-bidentate-chelation-assisted C-H activation protocol proceeded under mild and oxidant-free conditions with excellent selectivity. The utility of this approach is demonstrated by the preparative scale, selective conversion of inseparable Z/E alkenes and ready removal of the amide auxiliary to provide the corresponding ester.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc07466j | DOI Listing |
J Org Chem
January 2025
Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
Herein, we report an efficient [Ru(η-CH)Cl] catalyzed oxidative C-H alkenylation of benzoic acid in the green solvent water. A regioselective olefination of benzoic acid with functionalized alkenes like styrene and acrylate was established at a very mild condition of 60 °C temperature and in an aqueous medium. In contrast to the cyclization of the carboxylic group, a selective -olefination product of benzoic acid was observed with the acrylate.
View Article and Find Full Text PDFJ Org Chem
December 2024
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
A ligand-promoted oxidative dehydrogenation C-H alkenylation of indoles and olefins was achieved using commercial and low-cost Co(NO)·6HO as a catalyst and Mn(OAc) as an oxidant. The design and selection of electrically unique methyl-substituted salicylaldehyde as a ligand is the key to achieve this transformation. This protocol can introduce an indole backbone into diverse bioactive molecules such as ibuprofen, naproxen, and Estrol for late-stage synthetic modification, which has potential applications in the discovery of drug molecules containing an indole motif.
View Article and Find Full Text PDFJ Org Chem
December 2024
Jiangsu Key Laboratory for Chemistry of Low Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China.
An unprecedented Pd-catalyzed cascade alkyne insertion/Heck/C-H activation reaction of -iodophenyl alkenyl ethers and diarylacetylenes has been developed. Diversified tetracyclic-fused dihydroindeno[2,1-]chromenes bearing a quaternary center were constructed in an efficient, straightforward, and atom-economic way with good to excellent yields. The protocol features high bonding efficiency, operational simplicity, broad substrate scope, and easy scale-up.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.
Under iridium-catalyzed conditions, 2-aza-aryl-substituted secondary alcohols undergo C(sp)-H addition reactions to alkynes to provide alkenylated tertiary alcohols. The processes occur with very high regio- and enantioselectivity. An analogous addition to styrene is shown to provide a prototype C(sp)-H alkylation process.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
An efficient synthesis of continuously substituted quinoline derivatives palladium-catalyzed intramolecular 6- imidoylative cyclization of -alkenyl aryl isocyanides with (hetero)aryl halides or vinylic triflates has been developed. The reaction proceeds through the concerted metalation-deprotonation (CMD) mechanism by activation of a vinyl C-H bond with imidoylpalladium assisted by the carboxylate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!