Bioassay of ferulic acid derivatives as influenza neuraminidase inhibitors.

Arch Pharm (Weinheim)

College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Published: January 2020

Four series of ferulic acid derivatives were designed, synthesized, and evaluated for their neuraminidase (NA) inhibitory activities against influenza virus H1N1 in vitro. The pharmacological results showed that the majority of the target compounds exhibited moderate influenza NA inhibitory activity, which was also better than that of ferulic acid. The two most potent compounds were 1m and 4a with IC values of 12.77 ± 0.47 and 12.96 ± 1.34 μg/ml, respectively. On the basis of the biological results, a preliminary structure-activity relationship (SAR) was derived and discussed. Besides, molecular docking was performed to study the possible interactions of compounds 1p, 2d, 3b, and 4a with the active site of NA. It was found that the 4-OH-3-OMe group and the amide group (CON) of ferulic acid amide derivatives were two key pharmacophores for NA inhibitory activity. It is meaningful to further modify the natural product ferulic acid to improve its influenza NA inhibitory activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201900174DOI Listing

Publication Analysis

Top Keywords

ferulic acid
20
inhibitory activity
12
acid derivatives
8
influenza inhibitory
8
acid
5
bioassay ferulic
4
influenza
4
derivatives influenza
4
influenza neuraminidase
4
neuraminidase inhibitors
4

Similar Publications

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Cassava (Manihot esculenta Crantz) is a crucial crop in tropics and subtropics, primarily cultivated for its tuber. However, its foliage is rich in protein and can supply essential elements for ruminants. The objective of this study was to evaluate the phytochemical compounds by Gas chromatography-MS (GC-MS) and the main phenolic by High Pressure Liquid Chromatography (HPLC) present in cassava foliage, along with the fermentation pattern using a semi-automated gas production (GP) system.

View Article and Find Full Text PDF

Using maize plants expressing an apoplast targeted Aspergillus niger ferulic acid esterase (FAEA), with FAEA driven by a Lolium multiflorum senescence enhanced promoter (LmSee1), we extended measurements of FAEA activity to late-stage senescing plants and measured the stability of FAEA activity following stover storage. The impact of FAEA expression on cell wall hydroxycinnamic acid levels and arabinoxylan (AX) cross-links, and on the levels of cell wall sugars, acetyl bromide lignin and sugar release following saccharification by a cocktail of cellulases and xylanases, was assessed during plant development to full leaf senescence. These were determined in both individual internodes and in combined leaves and combined internodes of FAEA expressing and control partner plants.

View Article and Find Full Text PDF

The postingestion journey and bioconversion of wheat bran-bound ferulic acid, a known beneficial phytochemical, remain insufficiently understood. This study aims to systematically investigate its bioaccessibility, bioavailability, excretion, and colonic metabolism, both and . Initial analysis confirmed the abundance and bioactivity of ferulic acid in wheat bran.

View Article and Find Full Text PDF

Objective: The main objective of this study was to elucidate the effector material basis of Cimicifugae Rhizoma (CR) for the treatment of acute pneumonia (AP) and to explore the potential mechanisms underlying the anti-AP effects of these active components in a lipopolysaccharide (LPS)-induced inflammation model of lung epithelial cells.

Methods: Chemical components were identified using ultra-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-TOF-MS), and a CR component library was subsequently established based on a combination of databases and available literature. Bioinformatics techniques were used to construct "component-target" and "protein-protein interaction (PPI)" networks, and the potential active components and core targets screened according to degree value, followed by molecular docking and in vitro experiments for verification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!