A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis, Characterization, Kinetics, and Thermodynamics of EDTA-Modified Chitosan-Carboxymethyl Cellulose as Cu(II) Ion Adsorbent. | LitMetric

A new adsorbent derived from the naturally occurring biopolymers, chitosan (CS) and carboxymethyl cellulose (CMC) was prepared by cross-linking them using EDTA. EDTA having high affinity for metal ions can be used to enhance the chelation properties of the adsorbent enormously. The product obtained (chitosan-EDTA-CMC, CSECM) was characterized by different techniques: FTIR, XRD, SEM/EDAX, TGA, and XPS. The parameters for evaluation of the adsorption properties for removal of Cu(II) ions from the aqueous solution were determined using the batch adsorption method by studying the effect of pH, contact time, initial ion concentration, and temperature on adsorption. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models were applied to study the kinetics of the adsorption process, whereas Langmuir, Freundlich, Temkin, and D-R models were applied to evaluate the thermodynamics of the adsorption process. The kinetic adsorption parameters were in best agreement with the pseudo-second-order model, while thermodynamic parameters best fitted to the Langmuir isotherm at different temperatures for adsorption of Cu(II) ions from aqueous solution with a maximum adsorption capacity of 142.95 mg/g at pH 5.5. CSECM showed excellent regeneration capability and recovery of the Cu(II) ion up to five cycles without the loss of the adsorption efficiency, which is the best characteristic to select the appropriate choice of the adsorbent. The adsorbent was also employed in batch experiments to evaluate the adsorption of hardness, producing common metal ions in single and real wastewater solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812121PMC
http://dx.doi.org/10.1021/acsomega.9b02214DOI Listing

Publication Analysis

Top Keywords

adsorption
10
cuii ion
8
adsorbent adsorbent
8
metal ions
8
cuii ions
8
ions aqueous
8
aqueous solution
8
models applied
8
adsorption process
8
parameters best
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!