Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-ray High-Resolution Tomography.

ACS Omega

Electrochemistry Laboratory and Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland.

Published: October 2019

Coating load and distribution in gas diffusion layers (GDLs) for polymer electrolyte fuel cells (PEFCs) have a major influence on mass transport losses. To be able to optimize the coating distribution and get more accurate data about the influence of the coating on the PEFC performance, better characterization techniques are necessary. Common analysis techniques are limited to selected sections of the material, or they are not sensitive to small amounts of coating. We propose a new methodology to get a complete description of the coating distribution and the GDL structure by combining high-resolution X-ray tomography with high-resolution neutron tomography. Using an isotopic gadolinium staining method to enhance the neutron and X-ray absorption contrast, lower quantities of coating can be detected. The combination of both imaging techniques allows for a more detailed analysis of the coating distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811840PMC
http://dx.doi.org/10.1021/acsomega.9b01763DOI Listing

Publication Analysis

Top Keywords

coating distribution
16
coating
8
gas diffusion
8
diffusion layers
8
polymer electrolyte
8
electrolyte fuel
8
fuel cells
8
neutron x-ray
8
distribution analysis
4
analysis gas
4

Similar Publications

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry intended to fabricate nose-to-brain chitosan-grafted cationic leciplexes of MRZ (CS-MRZ-LPX) to improve its pharmacokinetic weaknesses and boost the pharmacodynamics aspects.

View Article and Find Full Text PDF

Study on Synergistically Improving Corrosion Resistance of Microarc Oxidation Coating on Magnesium Alloy by Loading of Sodium Tungstate and Silane Treatment.

Materials (Basel)

January 2025

Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.

Sodium tungstate (NaWO) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD.

View Article and Find Full Text PDF

Metasurface-Coated Liquid Microlens for Super Resolution Imaging.

Micromachines (Basel)

December 2024

State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710054, China.

Inspired by metasurfaces' control over light fields, this study created a liquid microlens coated with a layer of Au@TiO, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), this study aimed to extend the imaging system's cutoff frequency, improve microlens focusing, enhance the capture capability of evanescent waves, and utilize nanospheres to improve the conversion of evanescent waves into propagating waves, thus boosting the liquid microlens's super-resolution capabilities. The finite difference time domain (FDTD) method analyzed the impact of parameters including nanosphere size, microlens sample contact width, and droplet's initial contact angle on super-resolution imaging.

View Article and Find Full Text PDF

Clove (, L.) is a rich source of polyphenols and antioxidants, but its intense flavor, poor solubility, and instability may limit its widespread and efficient use in industrial applications. In a series of laboratory-scale experiments, gum Arabic (GA) and maltodextrin (MD) were used as coating agents in various proportions (ranging from 0MD:100GA to 100MD:0GA) for encapsulation of clove extract using a freeze-drying method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!