Quantum dots are fluorescent nanoparticles with narrow-band, size-tunable, and long-lasting emission. Typical formulations used for imaging proteins in cells are hydrodynamically much larger than the protein targets, so it is critical to assess the impact of steric effects deriving from hydrodynamic size. This report analyzes a new class of quantum dots that have been engineered for minimized size specifically for imaging receptors in narrow synaptic junctions between neurons. We use fluorescence correlation spectroscopy and transmission electron microscopy to calculate the contributions of the crystalline core, organic coating, and targeting proteins (streptavidin) to the total hydrodynamic diameter of the probe, using a wide range of core materials with emission spanning 545-705 nm. We find the contributing thickness of standard commercial amphiphilic polymers to be ~8 to ~14 nm, whereas coatings based on the compact ligand HS-(CH) (OCHCH)-OH contribute ~6 to ~9 nm, reducing the diameter by ~2 to ~5 nm, depending on core size. When the number of streptavidins for protein targeting is minimized, the total diameter can be further reduced by ~5 to ~11 nm, yielding a diameter of 13.8-18.4 nm. These findings explain why access to the narrow synapse derive primarily from the protein functionalization of commercial variants, rather than the organic coating layers. They also explain why those quantum dots with size around 14 nm with only a few streptavidins can access narrow cellular structures for neuronal labeling, whereas those >27 nm and a large number of streptavidins, cannot.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814160 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.8b02516 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India.
Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.
View Article and Find Full Text PDFJ Fluoresc
January 2025
School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Photonics and of Nanotechnologies- National Researcher Council (IFN-CNR), LNESS Laboratory, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy.
Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!