The aim of this study was to assess which Mycoplasma pneumoniae genotypes were present in Moscow during the years 2015-2018 and whether the proportion between detected genotypes changed over time. We were also interested in the presence of macrolide resistance (MR)Mycoplasma pneumoniae. We performed multilocus variable-number tandem-repeat (VNTR) analysis (MLVA), SNP typing, and mutation typing in the 23S rRNA gene from 117 M. pneumoniae clinical isolates. Our analysis suggests two major MLVA types: 4572 and 3562. In 2017-2018, MLVA type 4572 gradually became predominant. In general, the SNP type range is the same as described earlier for European countries. The analysis of MR mutations showed that 7% of the isolates had an A2063G mutation in the 23S rRNA gene with no isolates carrying an A2064G mutation. In 2017-2018, MLVA type 4572 (SNP type 1) begins to spread in Moscow, which was widespread globally, especially in Asian countries. SNP typing of our sample showed higher discriminatory power than MLVA typing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10096-019-03717-6 | DOI Listing |
Eur J Pediatr
January 2025
Department of Pediatrics, Ganzhou People's Hospital, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
Unlabelled: This research aimed to describe the effect of azithromycin combined with fluticasone propionate aerosol inhalation on immune function in children with chronic cough caused by Mycoplasma pneumoniae (MP) infection. This study was a retrospective analysis in which 110 children with chronic cough caused by MP infection were divided into two groups based on different treatment methods: 58 cases in the control group treated with azithromycin dry suspension and 52 cases in the intervention group treated with azithromycin dry suspension and fluticasone propionate inhalation aerosol. Lung function, inflammatory factors, immune indicators, laboratory-related indicators, adverse reactions, and therapeutic effects were compared between the two groups.
View Article and Find Full Text PDFJ Pediatric Infect Dis Soc
January 2025
Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, PA, USA.
Infect Drug Resist
January 2025
Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
Background: Rapid and accurate identification of causative organisms and prompt initiation of pathogen-targeted antibiotics are crucial for managing atypical pneumonia. The widespread application of targeted next-generation sequencing (t-NGS) in clinical practice demonstrates significant targeted advantages in rapid and accurate aetiological identification and antimicrobial resistance genes detection, particularly for difficult-to-culture, rare, or unexpected pathogens. An alarming surge of acquired macrolide resistance (MR) in (MP) presents a substantial challenge for the clinical selection of pathogen-targeted antibiotics worldwide, especially for fluoroquinolone-restricted pediatric patients with limited options available.
View Article and Find Full Text PDFInt J Gen Med
January 2025
Department of Respiratory and Critical Care Medical Department Infectious Diseases Ward, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
Background: This study examines the distribution characteristics of pathogenic bacteria in respiratory infections and their relationship with inflammatory markers to guide clinical drug use.
Methods: We selected 120 patients with lower respiratory tract infection in the electronic medical record system of Xinjiang Provincial People's Hospital from March 2019 to March 2023 for a case-control study. Using Indirect Immunofluorescence Antibody test(IFA), blood routine, C-reactive Protein (CRP), and High-sensitivity C-reactive Protein(hsCRP), we detected nine respiratory pathogens (Respiratory syncytial virus; Influenza A virus; Influenza B virus; Parainfluenza virus; Adenovirus; Mycoplasma pneumoniae; Chlamydia pneumoniae; Legionella pneumophila type 1; Rickettsia Q) in all patients and analyzed their distribution and correlation.
IJID Reg
March 2025
University of Insubria, Department of Medicine and Technology Innovation Varese, Varese, Italy.
We report an increase of () respiratory infections during 2023-2024. The positive rate in 2024 is higher at 68 per 1668 (5%) compared with 2023 at nine per 1264 (0.7%), highlighting the increased circulation in north-west Italy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!