Cancer cells can use existing blood vessels to acquire a vasculature. This process is termed 'vessel co-option'. Vessel co-option is an alternative to the growth of new blood vessels, or angiogenesis, and is adopted by a wide range of human tumour types growing within numerous tissues. A complementary aspect of this process is extravascular migratory tumour spread using the co-opted blood vessels as a trail. Vessel co-opting tumours can be discriminated from angiogenic tumours by specific morphological features. These features give rise to distinct histopathological growth patterns that reflect the interaction of cancer cells with the microenvironment of the organ in which they thrive. We will discuss the histopathological growth patterns of vessel co-option in the brain, the liver and the lungs. The review will also highlight evidence for the potential clinical value of the histopathological growth patterns of cancer. Vessel co-option can affect patient outcomes and resistance to cancer treatment. Insight into the biological drivers of this process of tumour vascularization will yield novel therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10456-019-09690-0 | DOI Listing |
Cancers (Basel)
November 2024
Division of Pathology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
There are several types of microvasculature supplying neoplasms: "newly formed blood vessels" (neoangiogenesis), which are a component of the tumor microenvironment (TME) of invasive carcinoma with wound healing-like reaction; and "pre-existing blood vessels", which are used as tumor-supplying vessels by neoplasms (co-option vessels) and are likely to develop in hypervascularized organs. We herein review the microvasculature of neoplasms of biliary tract with reference to pre-existing vessels and vessel co-options. In the hepatobiliary system, intrahepatic large and extrahepatic bile ducts (large bile ducts) and the gallbladder as well as hepatic lobules are highly vascularized regions.
View Article and Find Full Text PDFCells
November 2024
Division of Hematology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Lymphoma growth, progression, and dissemination require tumor cell interaction with supporting vessels and are facilitated through tumor-promoted angiogenesis, lymphangiogenesis, and/or lymphoma vessel co-option. Vessel co-option has been shown to be responsible for tumor initiation, metastasis, and resistance to anti-angiogenic treatment but is largely uncharacterized in the setting of lymphoma. We developed an in vitro model to study lymphoma-vessel interactions and found that mantle cell lymphoma (MCL) cells co-cultured on Matrigel with human umbilical vein (HUVEC) or human lymphatic (HLEC) endothelial cells migrate to and anneal with newly formed capillary-like (CLS) or lymphatic-like (LLS) structures, consistent with lymphoma-vessel co-option.
View Article and Find Full Text PDFAngiogenesis refers to the process of forming a new network of blood vessels from existing ones through the migration, proliferation, and differentiation of endothelial cells. This process is crucial for the growth and spread of solid tumors, particularly once the tumor volume exceeds 2 mm, as the newly formed vascular network provides essential oxygen, nutrients, and growth factors to the tumor. Anti-angiogenesis therapy has become one of the commonly used targeted treatments for cancer in clinical practice.
View Article and Find Full Text PDFNat Cell Biol
December 2024
Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Trends Cancer
November 2024
Dipartimento di Biomedicina Traslazionale e Neuroscienze, Università degli Studi di Bari, Bari, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!