AI Article Synopsis

  • Chronic pain is frequently treated with opioids like morphine, but these can lead to side effects such as dependence and tolerance, highlighting the need for new pain management options.
  • The study focuses on the TRPV1 receptor and examines the effects of SB-366791, a TRPV1 antagonist, in pain relief tests on mice, including those tolerant and non-tolerant to morphine.
  • Results show that SB-366791 effectively alleviates pain without causing harmful genetic effects, but further research is needed to understand its mechanisms better.

Article Abstract

Chronic pain is mainly treated with opioid analgesics such as morphine. However, the use of these substances can cause adverse effects, including dependence and tolerance, necessitating the discovery of a new approach to analgesic therapies. The transient receptor potential vanilloid 1 (TRPV1) is linked to thermal sensibility and has been considered as a new therapeutic option for pain treatment. This study aims to investigate the antinociceptive effect and toxicity of SB-366791, a TRPV1 antagonist. Morphine-tolerant and morphine non-tolerant Swiss mice were submitted to the hot plate and thermal tail flick tests. Toxicological evaluations of the genotoxic and mutagenic activities of SB-366791 were assessed using a comet assay and micronucleus test, and the Salmonella/microsome mutagenicity assay. In the hot plate test, intrathecal injection of SB-366791 or morphine resulted in significantly increased antinociception in non-tolerant mice. SB-366791 also led to an analgesic effect in the tail flick test. Tolerant mice that received SB-366791 demonstrated a central antinociceptive effect in both thermal tests. No genotoxic effects were observed in the comet assay and no mutagenic effects were detected in the micronucleus test or in the Salmonella/microsome assay. Behavioral results of the thermal nociception tests show that SB-366791 has antinociceptive potential in both morphine-tolerant and non-tolerant mice and does not cause genotoxic or mutagenic effects. Nevertheless, new studies should be performed to clarify the activity and participation of vanilloid channels in the antinociception of SB-366791.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-019-01748-6DOI Listing

Publication Analysis

Top Keywords

sb-366791
8
hot plate
8
tail flick
8
genotoxic mutagenic
8
comet assay
8
micronucleus test
8
test salmonella/microsome
8
non-tolerant mice
8
mutagenic effects
8
mice
5

Similar Publications

Background: Chronic postoperative pain (CPOP) is among the main consequences of surgical procedures, directly affecting the quality of life. Although many strategies have been used to treat this symptom, they are often ineffective. Thus, studies investigating CPOP-associated mechanisms may help to develop more effective treatment strategies.

View Article and Find Full Text PDF

Unlabelled: Coxsackievirus B3 (CVB3) is a non-enveloped picornavirus that can cause systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that following infection, CVB3 localizes to mitochondria, inducing mitochondrial fission and mitophagy, while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This results in the release of virus-laden mitophagosomes from the host cell as infectious extracellular vesicles (EVs) which allow non-lytic viral egress.

View Article and Find Full Text PDF

Activation of TRPV1 Channels Inhibits the Release of Acetylcholine and Improves Muscle Contractility in Mice.

Cell Mol Neurobiol

November 2023

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111.

TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission.

View Article and Find Full Text PDF

Transient receptor potential ion channel, vanilloid subfamily, type 1 (TRPV1) cation channel, and cannabinoid receptor 1 (CB) are essential in the modulation of nociceptive signaling in the spinal cord dorsal horn that underlies different pathological pain states. TRPV1 and CB receptors share the endogenous agonist anandamide (AEA), produced from N-arachidonoylphosphatidylethanolamine (20:4-NAPE). We investigated the effect of the anandamide precursor 20:4-NAPE on synaptic activity in naive and inflammatory conditions.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!