Background: Liddle syndrome is a monogenic disease with autosomal dominant inheritance. Basic characteristics of this disease are hypertension, reduced concentration of aldosterone and renin activity, as well as increased excretion of potassium leading to low level of potassium in serum and metabolic alkalosis. The cause of Liddle syndrome is missense or frameshift mutations in SCNN1A, SCNN1B, or SCNN1G genes that encode epithelial sodium channel subunits.

Case Presentation: We describe a family with Liddle syndrome from Russia. 15-year-old proband has arterial hypertension, hypokalemia, hyporeninemia, metabolic alkalosis, but aldosterone level is within the normal range. At 12 years of age, arterial hypertension was noticed for the first time. We identified novel frameshift mutation c.1769delG (p.Gly590Alafs) in SCNN1G, which encodes the γ subunit of ENaC in vertebrates. The father and younger sister also harbor this heterozygous deletion. Treatment with amiloride of proband and his sister did not normalize the blood pressure, but normalized level of plasma renin activity.

Conclusions: Our results expand the mutational spectrum of Liddle syndrome and provide further proof that the conserved PY motif is crucial to control of ENaC activity. Genetic analysis has implications for the management of hypertension, specific treatment with amiloride and counselling in families with Liddle syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815463PMC
http://dx.doi.org/10.1186/s12882-019-1579-4DOI Listing

Publication Analysis

Top Keywords

liddle syndrome
24
epithelial sodium
8
sodium channel
8
metabolic alkalosis
8
arterial hypertension
8
treatment amiloride
8
liddle
6
syndrome
5
syndrome novel
4
novel mutation
4

Similar Publications

Liddle syndrome, a rare form of monogenic hypertension, poses significant diagnostic and therapeutic challenges due to its phenotypic variability and the need for genetic testing. The rarity of the condition, coupled with the limited availability of first-line treatments such as epithelial sodium channel (ENaC) blockers, makes this case report particularly urgent and novel, highlighting alternative management strategies in resource-limited settings. The aim of this case report was to present the diagnostic challenges, therapeutic strategies, and clinical outcomes of a patient with Liddle syndrome who did not have access to ENaC blockers, emphasizing the importance of early recognition and personalized treatment.

View Article and Find Full Text PDF

Hypertension is a growing concern worldwide, with increasing prevalence rates in both children and adults. Most cases of hypertension are multifactorial, with various genetic, environmental, socioeconomic, and lifestyle influences. However, monogenic hypertension, a blanket term for a group of rare of hypertensive disorders, is caused by single-gene mutations that are typically inherited in an autosomal dominant fashion, and ultimately disrupt normal blood pressure regulation in the kidney or adrenal gland.

View Article and Find Full Text PDF

Liddle syndrome (LS) is an autosomal dominant genetic disorder characterized by early onset hypertension, hypokalemia, and low plasma aldosterone or renin concentration. It is caused by mutations in subunits of the epithelial sodium channel (ENaC). The clinical phenotypes of LS are variable and nonspecific, making it prone to both misdiagnosis and missed diagnosis.

View Article and Find Full Text PDF

Young Athlete With Hypertension and Hypokalemia.

Hypertension

November 2024

Department of Nephrology, INSERM EnVI U1096, CHU Rouen, CIC-CRB 1404 (D.G.), University of Rouen Normandy, France.

We describe a 17-year-old woman diagnosed with severe hypertension during routine follow-up after the prescription of a combined oral contraceptive pill. Initially, due to her age, the estradiol-containing contraception, and high-level sport practice, physicians suspected drug-induced hypertension. Blood tests showed hypokalemia, and further investigations revealed pseudoaldosteronism.

View Article and Find Full Text PDF

3--18-Glycyrrhetinic Acid or Its Glucuronide, the Metabolites of Glycyrrhizinic Acid with Individual Differences, Correlated with Diagnostic Marker for Licorice-Induced Pseudoaldosteronism in Humans.

Drug Metab Dispos

November 2024

Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Japan (R.S., K.I., Y.T., T.M.); Center for Kampo Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan (T.Y., K.F., K.W.); Department of Japanese Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan (T.N.); Department of Japanese Traditional (Kampo) Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa-City, Ishikawa, Japan (K.O.-O.); Kampo Clinical Center, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan (K.O.-O.); Department of Oriental Medicine, Kameda Medical Center, 929 Higashi-cho, Kamogawa, Chiba, Japan (K.M.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan (K.F.)

Article Synopsis
  • Licorice is commonly used in traditional Japanese medicine and as a sweetener, but it can cause a side effect known as pseudoaldosteronism (PsA), which leads to symptoms like low potassium, high blood pressure, and fluid retention.
  • A study examined 78 patients using Kampo medicines with licorice, finding multiple glycyrrhizinic acid metabolites in their blood and urine, including some newly identified ones.
  • Individual differences were noted in the levels of these metabolites, suggesting they may influence susceptibility to PsA, with specific metabolites like 3--GA and 3-GA30G potentially playing a significant role.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!