Background: Protein subcellular localization plays a crucial role in understanding cell function. Proteins need to be in the right place at the right time, and combine with the corresponding molecules to fulfill their functions. Furthermore, prediction of protein subcellular location not only should be a guiding role in drug design and development due to potential molecular targets but also be an essential role in genome annotation. Taking the current status of image-based protein subcellular localization as an example, there are three common drawbacks, i.e., obsolete datasets without updating label information, stereotypical feature descriptor on spatial domain or grey level, and single-function prediction algorithm's limited capacity of handling single-label database.

Results: In this paper, a novel human protein subcellular localization prediction model MIC_Locator is proposed. Firstly, the latest datasets are collected and collated as our benchmark dataset instead of obsolete data while training prediction model. Secondly, Fourier transformation, Riesz transformation, Log-Gabor filter and intensity coding strategy are employed to obtain frequency feature based on three components of monogenic signal with different frequency scales. Thirdly, a chained prediction model is proposed to handle multi-label instead of single-label datasets. The experiment results showed that the MIC_Locator can achieve 60.56% subset accuracy and outperform the existing majority of prediction models, and the frequency feature and intensity coding strategy can be conducive to improving the classification accuracy.

Conclusions: Our results demonstrate that the frequency feature is more beneficial for improving the performance of model compared to features extracted from spatial domain, and the MIC_Locator proposed in this paper can speed up validation of protein annotation, knowledge of protein function and proteomics research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815465PMC
http://dx.doi.org/10.1186/s12859-019-3136-3DOI Listing

Publication Analysis

Top Keywords

protein subcellular
20
prediction model
16
subcellular localization
12
frequency feature
12
image-based protein
8
subcellular location
8
monogenic signal
8
spatial domain
8
mic_locator proposed
8
intensity coding
8

Similar Publications

Arv1; a "Mover and Shaker" of Subcellular Lipids.

Contact (Thousand Oaks)

January 2025

Department of Biology, Barnard College at Columbia University, 3009 Broadway, New York, NY 10023, USA.

The composition of eukaryotic membranes reflects a varied but precise amalgam of lipids. The genetic underpinning of how such diversity is achieved or maintained is surprisingly obscure, despite its clear metabolic and pathophysiological impact. The Arv1 protein is represented in all eukaryotes and was initially identified in the model eukaryote as a candidate transporter of lipids from the endoplasmic reticulum.

View Article and Find Full Text PDF

Structure and Function Analysis of Microcystin Transport Protein MlrD.

Biochimie

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:

Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.

View Article and Find Full Text PDF

PIASy of orange-spotted grouper (Epinephelus coioides) negatively regulates RLRs-mediated innate antiviral immunity.

Fish Shellfish Immunol

January 2025

College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China. Electronic address:

During viral infection, RIG-I-like receptors (RLRs) are cytoplasmic pattern recognition receptors that recognize and bind to viral RNA components, initiating the transcription of interferon-related genes, inflammatory cytokines and other factors, thereby triggering the cellular production of an antiviral innate immune response. The protein inhibitor of activated signal transducer and activator of transcription (STAT) (PIAS) protein family has become a hot research topic due to its extensive involvement in the regulation of cytokines, inflammatory factors and innate immune signaling pathways. In the present study, we investigated the role of fish PIASy in Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) infections.

View Article and Find Full Text PDF

Interaction of normelinonine F and related N-methyl-β-carbolines derivatives with bovine serum albumin. Spectroscopic profiles, multivariate analysis and theoretical calculations.

Int J Biol Macromol

January 2025

Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164, B7130IWA Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina. Electronic address:

β-carbolines (βCs) represent a large family of bioactive alkaloids, including norharmane and normelinonine F, known for their diverse pharmacological activities. The effects of these alkaloids may depend, among other factors, on their delivery, accumulation in different subcellular compartments, and interactions with biomacromolecules such as serum albumins. In this study, we investigated the pH dependence of the interactions between bovine serum albumin (BSA) and four βCs (norharmane, normelinonine F, and their corresponding N(9)-methyl derivatives) using UV-vis and fluorescence spectroscopy, combined with multivariate analysis and molecular docking.

View Article and Find Full Text PDF

Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!