Dissimilar interaction between dopaminergic and cholinergic systems in the initiation of emission of 50-kHz and 22-kHz vocalizations.

Pharmacol Biochem Behav

Department of Biological Sciences, Brock University, St. Catharines, ON, Canada; Department of Psychology, Brock University, St. Catharines, ON, Canada.

Published: January 2020

Rats emit 22-kHz or 50-kHz ultrasonic vocalizations (USVs) to signal their emotional state to other conspecifics. The 22-kHz USVs signal a negative emotional state while 50-kHz USVs reflect a positive affective state. The initiation of 22-kHz USVs is dependent on the activity of cholinergic neurons within the laterodorsal tegmental nucleus that release acetylcholine along the medial cholinoceptive vocalization strip. Emission of 50-kHz USVs is dependent upon the activation of dopaminergic neurons located within the ventral tegmental area that release dopamine into the medial shell of the nucleus accumbens. There have been reports that showed an antagonistic interaction between acetylcholine and dopamine during the expression of emotional states, and dopamine agonists decreased carbachol-induced emission of 22-kHz USVs. The current study tests the hypothesis that initial antagonism of dopamine receptors by systemic haloperidol or intraacumbens raclopride should increase the subsequent emission of 22 kHz USVs induced by carbachol from the lateral septum. Our findings showed that antagonism of dopaminergic signaling either via systemic haloperidol or via intracerebral raclopride did not alter the number of emitted 22-kHz USVs. Thus, inhibition of the mesolimbic dopamine system did not increase the magnitude of a negative emotional state. It was found, however, that prolonged emission of 22-kHz USVs initiated by carbachol caused a delayed rebound emission (R) of 50-kHz USVs appearing after 300 s of emission of 22-kHz USVs, i.e., when the response was subsiding. The R-50-kHz USVs were predominantly frequency modulated (FM) USVs and their number was directly proportional to the number of recorded 22-kHz USVs. The emission of R-50-kHz USVs was reversed by systemic pretreatment with haloperidol or intraacumbens injection of raclopride. It is argued that the R-50-kHz USVs represent a rebound emotional state that is opposite in valence and arousal induced by carbachol. Importantly, prolonged emission of amphetamine-induced 50 kHz USVs failed to show any vocalization rebound effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2019.172815DOI Listing

Publication Analysis

Top Keywords

22-khz usvs
28
usvs
17
emotional state
16
emission 50-khz
12
50-khz usvs
12
emission 22-khz
12
r-50-khz usvs
12
emission
9
22-khz
9
usvs signal
8

Similar Publications

22 and 50 kHz rat ultrasonic vocalization playback reveals sex differences in behavior and cFos in brain regions associated with affective processing.

Behav Brain Res

February 2025

Research in Affective and Translational Neuroscience Laboratory, Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME 04011 USA, USA. Electronic address:

Adult rats communicate using ultrasonic vocalization (USV) frequencies indicating negative (22 kHz) or positive (50 kHz) affective states. Playback of USVs can serve as an ethologically translational method to study affective processing in response to socially communicated states. However, few studies have examined behavioral and neural effects of USV playback in both male and female rats.

View Article and Find Full Text PDF

The rapid decrease of light intensity is a potent stimulus of rats' activity. The nature of this activity, including the character of social behavior and the composition of concomitant ultrasonic vocalizations (USVs), is unknown. Using deep learning algorithms, this study aimed to examine the social life of rat pairs kept in semi-natural conditions and observed during the transitions between light and dark, as well as between dark and light periods.

View Article and Find Full Text PDF

Sex differences in fear expression and persistence in an animal model of Post-Traumatic Stress Disorder.

Neuroscience

November 2024

Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy; Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome 00143, Italy. Electronic address:

Post-Traumatic Stress Disorder (PTSD) is a complex psychiatric condition arising from traumatic experiences, marked by abnormal fear memories. Despite women are twice as likely as men to develop PTSD, the biological mechanisms underlying this disparity remain inadequately explored, particularly in preclinical studies involving female subjects. Previous research shows that female rats exhibit active fear responses, while males display passive behaviors.

View Article and Find Full Text PDF

Despite decades of preclinical investigation, there remains limited understanding of the etiology and biological underpinnings of anxiety disorders. Sensitivity to potential threat is characteristic of anxiety-like behavior in humans and rodents, but traditional rodent behavioral tasks aimed to assess threat responsiveness lack translational value, especially with regard to emotionally valenced stimuli. Therefore, development of novel preclinical approaches to serve as analogues to patient assessments is needed.

View Article and Find Full Text PDF

Opioid use disorder has become an epidemic in the United States, fuelled by the widespread availability of fentanyl, which produces rapid and intense euphoria followed by severe withdrawal and emotional distress. We developed a new preclinical model of fentanyl seeking in outbred male and female rats using volitional oral self-administration (SA) that can be readily applied in labs without intravascular access. Using a traditional two-lever operant procedure, rats learned to take oral fentanyl vigorously, escalated intake across sessions, and readily reinstated responding to conditioned cues after extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!