A standard for activity of Ra in secular equilibrium with its progeny has been developed, based on triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) counting. The standard was confirmed by efficiency tracing and 4παβ(LS)-γ(NaI(Tl)) anticoincidence counting, as well as by 4πγ ionization chamber and NaI(Tl) measurements. Secondary standard ionization chambers were calibrated with an expanded uncertainty of 0.62% (k = 2). Calibration settings were also determined for a 5 mL flame-sealed ampoule on several commercial reentrant ionization chambers (dose calibrators).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055090PMC
http://dx.doi.org/10.1016/j.apradiso.2019.108933DOI Listing

Publication Analysis

Top Keywords

liquid scintillation
8
scintillation counting
8
counting standard
8
ionization chambers
8
primary standardization
4
standardization activity
4
activity liquid
4
standard activity
4
activity secular
4
secular equilibrium
4

Similar Publications

Emerging 0D Hybrid Metal Halide Luminescent Glasses.

Adv Mater

January 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

0D hybrid metal halide (HMH) luminescent glasses have garnered significant attentions for its chemical diversity in optoelectronic applications and it also retains the skeleton connectivity and coordination mode of the crystalline counterparts while exhibiting various physics/chemistry characteristics distinct from the crystalline states. However, understanding of the glass-forming ability and the specific structural origins underpinning the luminescent properties of 0D HMH glasses remains elusive. In this review, it is started from the solid-liquid phase transition and thermodynamic analysis of 0D HMHs formed through melt-quenching, and summarize the current compounds capable of stably forming glassy phases via chemical structural design.

View Article and Find Full Text PDF

Removal of liquid scintillator exudates by the metal organic frameworks materials: The role of functional groups.

PLoS One

December 2024

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.

The leakage of Liquid scintillator exudates has brought potential harm to the environment. Attributed to the large specific surface area and high modifiability, high-performance adsorbents based on metal-organic frameworks (MOFs) can effectively remove organic pollutants. In this work, we use different functional groups to prepare the material of UIO-66(Zr).

View Article and Find Full Text PDF

Tritium, a radioactive isotope produced naturally through cosmic radiation interactions and anthropogenically through nuclear weapons testing, poses potential environmental risks, particularly within the water cycle. This study measured tritium concentrations in surface water across Thailand to establish a baseline dataset for monitoring potential contamination from nuclear activities and accidents. Surface water samples were collected from 14 large reservoirs during the wet season in October 2023 and the dry season in February 2024, providing a total of 28 samples.

View Article and Find Full Text PDF

Liquid scintillator consists of an organic solvent and one or more scintillation solutes, which can emit light pulses after absorbing X- and γ-rays, or high-energy particles. It has the characteristics of strong neutron/γ-ray (n/γ) discrimination, short decay time, unlimited size and low cost, which plays an important role in high-sensitivity and large-scale radiation detection, especially in the construction and safe operation of nuclear facilities. However, the impact of solvent selection and moisture content on the fluorescence-scintillation properties of scintillators has not been adequately investigated in the literature.

View Article and Find Full Text PDF

Introduction: CA102N is a novel anticancer drug developed by covalently linking H-Nim (N-(4-Amino-2-phenoxyphenyl methanesulfonamide) to Hyaluronic Acid to target CD44 receptor-rich tumors. The proposed approach seeks to enhance the efficacy and overcome limitations associated with H-Nim, including poor solubility and short half-life.

Methods: The study aimed to evaluate the pharmacokinetics, biodistribution, metabolism, and tumor permeability of [14C] CA102N in xenograft mice following a single intravenous dose of 200 mg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!