A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Abnormal thyroid hormone receptor signaling in osteoarthritic osteoblasts regulates microangiogenesis in subchondral bone. | LitMetric

Aims: Previous study indicated that the increase of local bio-availability of 3'3'5-triiodothyronine (T3) influenced osteoarthritis (OA) initiation. We aimed to investigate the role of thyroid hormone receptors (THRs) signaling in OA osteoblasts.

Materials And Methods: THRs expression in OA was detected by immunohistochemistry, immunofluorescence, RT-qPCR and western blotting. These effects on the expression of angiogenesis-related factors were examined after THRα or THRβ knockdown in OA osteoblasts. Fluorescence in situ hybridization was used to confirm the leading receptor for regulating angiogenesis-related factors. Co-culture model was utilized to observe the MMPs expression in chondrocytes after THRα knockdown in osteoblasts. The in vivo effects were also studied after intra-articular injection with THRα siRNA in OA model mice. Micro-CT and immunohistochemistry were employed to evaluate the changes of subchondral bone.

Key Findings: THRs expression and nuclear translocation were upregulated in human OA osteoblasts. Immunohistochemistry showed that angiogenic activities were increased in OA subchondral bone of human and mice. VEGF, HIF-1α and IGF-1, these THR downstream genes were downregulated after THRα knockdown in OA osteoblasts. Fluorescence in situ hybridization further indicated that THRα signaling mainly regulated VEGF expression. Intra-articular injection with THRα siRNA reduced angiogenic activities in OA model mice subchondral bone and ameliorated cartilage degradation. Micro-CT analysis displayed that the aberrant subchondral bone formation in OA was promoted.

Significance: The microangiogenesis in subchondral bone may be partly attributed to abnormal THRα signaling in osteoblasts, and local inhibition of the THRα could be a potential target to treat OA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2019.116975DOI Listing

Publication Analysis

Top Keywords

subchondral bone
20
knockdown osteoblasts
12
thyroid hormone
8
microangiogenesis subchondral
8
thrs expression
8
angiogenesis-related factors
8
thrα
8
osteoblasts fluorescence
8
fluorescence situ
8
situ hybridization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!