Brain malignancies: Glioblastoma and brain metastases.

Semin Cancer Biol

Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.

Published: February 2020

Brain, the major organ of the central nervous system controls and processes most of body activities. Therefore, the most aggressive brain tumor - glioblastoma and metastases from other organs to the brain are lethal leaving the patients with very short time of survival. The brain tissue landscape is very different from any other tissues and the specific microenvironment, comprising stem cells niches and blood-brain barrier, significantly influences the low rate of glioblastoma metastasis out of the brain, but better accommodates brain-invading cancer. In contrast to low frequency (0.5%) of all glioblastoma metastases, 10%-45% of other primary cancers do metastasize to the brain. This review addresses general cellular and molecular pathways that are to some extent similar in both types of metastases, involving circulating tumor cells (CTCs) with cancer stem cells (CSCs) characteristics, and metastatic niches. The invasion is a dynamic process involving reversible epithelial-to-mesenchymal (EMT) cell process, creating a transient gradient state that is inter-connected with epigenetic plasticity of the metastasizing (m)CSCs. These cells can switch between stationary, low proliferating/dormant state to a migratory, mesenchymal-like state. Settling in their respective niches as dormant CSCs in the secondary organ is a common feature in all types of metastases. In glioblastoma metastasis, the malignant mGSC cells express markers of mesenchymal GSC subtype (MES-GSC), such as CD44 and YK-40 and their major obstacle seems to be propagating in the in various organs' microenvironments, different from the niches that home GSCs in the primary glioblastoma. Focusing on one stromal component in the glioblastoma niches, the mesenchymal stem cells (MSCs), we report herein on their differential effects on glioblastoma cells, highly depending on their genetic subtype. On the other hand, in brain metastases, the major hindrance to metastatic progression of mCSCs seem to be crossing the blood-brain-barrier. Novel therapeutic approaches for brain metastases from various cancer types are advancing slowly, and the general trends involve targeting metastatic sub-clones and selective determinants of their niches. The update on the four most common brain metastases from lung, breast, melanoma and colorectal carcinoma is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2019.10.010DOI Listing

Publication Analysis

Top Keywords

brain metastases
16
stem cells
12
brain
11
glioblastoma
8
metastases
8
glioblastoma metastases
8
glioblastoma metastasis
8
types metastases
8
cells
7
niches
6

Similar Publications

The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).

View Article and Find Full Text PDF

Carcinosarcoma (CS), also known as metaplastic breast carcinoma with mesenchymal differentiation, is one of the five distinct subtypes of metaplastic breast cancer. It is considered as a mixed, biphasic neoplasm consisting of a carcinomatous component combined with a malignant nonepithelial element of mesenchymal origin without an intermediate transition zone. Although cellular origin of this neoplasm remains controversial, most researchers declare that neoplastic cells derive from a cellular structure with potential biphasic differentiation.

View Article and Find Full Text PDF

Introduction: Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients.

Research Question: Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action?

Material And Methods: This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases.

View Article and Find Full Text PDF

Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.

Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.

View Article and Find Full Text PDF

Delayed Progression of Ataxia with a Static Cerebellar Lesion- Consider SCA27B.

Cerebellum

January 2025

Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.

Repeat expansions in the fibroblast growth factor 14 gene (FGF14), associated with spinocerebellar ataxia type 27B (SCA27B), have emerged as a prevalent cause of previously unexplained late-onset cerebellar ataxia. Here, we present a patient with residual symptom of gait ataxia after complicated meningioma surgery, who presented with progressive symptoms of oculomotor disturbances, speech difficulties, vertigo and worsening of gait imbalance, twelve years post-resection. Neuroimaging revealed a surgical resection cavity in the dorsolateral side of the left cerebellar hemisphere, accompanied by gliosis in left cerebellar hemisphere extending into the vermis, extensive non-specific supratentorial periventricular white matter abnormalities, and mild atrophy of the cerebellar vermis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!