Human pluripotent stem cell (hPSC) technology has revolutionized the field of biology through the unprecedented ability to study the differentiation of human cells in vitro. In the past decade, hPSCs have been applied to study development, model disease, develop drugs, and devise cell replacement therapies for numerous biological systems. Of particular interest is the application of this technology to study and treat optic neuropathies such as glaucoma. Retinal ganglion cells (RGCs) are the primary cell type affected in these diseases, and once lost, they are unable to regenerate in adulthood. This necessitates the development of strategies to study the mechanisms of degeneration as well as develop translational therapeutic approaches to treat early- and late-stage disease progression. Numerous protocols have been established to derive RGCs from hPSCs, with the ability to generate large populations of human RGCs for translational applications. In this review, the key applications of hPSCs within the retinal field are described, including the use of these cells as developmental models, disease models, drug development, and finally, cell replacement therapies. In greater detail, the current report focuses on the differentiation of hPSC-derived RGCs and the many unique characteristics associated with these cells in vitro including their genetic identifiers, their electrophysiological activity, and their morphological maturation. Also described is the current progress in the use of patient-specific hPSCs to study optic neuropathies affecting RGCs, with emphasis on the use of these RGCs for studying disease mechanisms and pathogenesis, drug screening, and cell replacement therapies in future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104889PMC
http://dx.doi.org/10.1007/978-3-030-28471-8_5DOI Listing

Publication Analysis

Top Keywords

cell replacement
12
replacement therapies
12
retinal ganglion
8
ganglion cells
8
cells human
8
human pluripotent
8
pluripotent stem
8
cells vitro
8
optic neuropathies
8
cells
6

Similar Publications

There are no therapies for reversing chronic organ degeneration. Non-healing degenerative wounds are thought to be irreparable, in part, by the inability of the tissue to respond to reparative stimuli. As such, treatments are typically aimed at slowing tissue degeneration or replacing cells through transplantation.

View Article and Find Full Text PDF

Unlabelled: The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.

View Article and Find Full Text PDF

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.

View Article and Find Full Text PDF

Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!