Purpose: The purpose of this study was to assess the clinical outcomes of the implantation of an aliphatic polyurethane scaffold for the treatment of partial loss of meniscal tissue at a mean follow-up of 36 months.
Methods: A retrospective review on prospectively collected data was performed on patients who underwent implantation of an aliphatic polyurethane-based synthetic meniscal scaffold. Patients were evaluated for demographics data, lesion and implant characteristics (sizing, type and number of meniscal sutures), previous and combined surgeries and complications. Clinical parameters were rated using NRS, IKDC subjective, Lysholm, KOOS, and Tegner activity score, both preoperatively and at final follow-up.
Results: Sixty-seven patients were evaluated at a mean follow-up of 36 months (48 M and 19 F; mean age 40.8 ± 10.6 years; mean BMI 25.4 ± 4.3). The scaffold was implanted on the medial side in 54 cases, and on the lateral one in 13. Forty-seven patients had undergone previous surgical treatment at the same knee and 45 required combined surgical procedures. All evaluated scores improved significantly from the baseline. Among possible prognostic factors, a delayed scaffold implantation had lower post-operative clinical scores: IKDC subjective (P = 0.049), KOOS Sport (P = 0.044), KOOS total (p = 0.011), and Tegner (P = 0.03) scores at follow-up.
Conclusions: The polyurethane meniscal scaffold implantation led to a significant clinical benefit in a large number of patients. A delayed intervention correlated with worse results.
Level Of Evidence: IV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00167-019-05760-4 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Rheumatoid arthritis (RA) is a common autoimmune joint disease characterized by persistent synovial inflammation and cartilage damage. The current clinical treatments primarily utilize drugs such as triptolide (TP) to address inflammation, yet they are unable to directly repair damaged cartilage. Furthermore, the persistent inflammation often undermines the effectiveness of traditional cartilage repair strategies, preventing them from achieving optimal outcomes.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Istituto per la Ricerca e Innovazione Biomedica (IRIB), CNR, Via Ugo La Malfa, 153, 90146, Palermo, Italy. Electronic address:
Despite advancements in cancer treatments, therapies frequently exhibit high cytotoxicity, and surgery remains the predominant method for treating most solid tumors, often with limited success in preventing post-surgical recurrence. Implantable biomaterials, designed to release drugs at a localised site in response to specific stimuli, represent a promising approach for enhancing tumour therapy. In this study, a redox-responsive glutathione extended polyurethane urea (PolyCEGS) was used to produce paclitaxel (PTX) and gold nanorods (AuNRs) loaded electrospun membranes for combined redox/near-infrared (NIR) light-responsive release chemotherapy and hyperthermic effect.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET), Av. Colón 10850, Mar del Plata B7606BWV, Argentina.
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
Department of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
Biological macromolecules such as polysaccharides and proteins, due to their excellent biocompatibility and biodegradability, are ideal for promoting Skin Tissue Engineering (STE) both in vitro and in vivo. In this study, a core-shell electrospun scaffold was fabricated using the coaxial electrospinning method, with Polyurethane (PU) forming the shell and a mixture of Starch (ST), Propolis Extract (PE), and Hyaluronic Acid (HA) forming the core. The scaffold's morphology was characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), confirming the successful formation of a well-defined core-shell structure.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran. Electronic address:
This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!