Loss-of-function mutations in the gene encoding human protein DJ-1 cause early onset of Parkinson's disease, suggesting that DJ-1 protects dopaminergic neurons. The molecular mechanisms underlying this neuroprotection are unclear; however, DJ-1 has been suggested to be a GSH-independent glyoxalase that detoxifies methylglyoxal (MGO) by converting it into lactate. It has also been suggested that DJ-1 serves as a deglycase that catalyzes hydrolysis of hemithioacetals and hemiaminals formed by reactions of MGO with the thiol and amino groups of proteins. In this report, we demonstrate that the equilibrium constant of reaction of MGO with thiols is ∼500 m at 37 °C and that the half-life of the resulting hemithioacetal is only 12 s. These thermodynamic parameters would dictate that a significant fraction of free MGO will be present in a fast equilibrium with hemithioacetals in solution. We found that removal of free MGO by DJ-1's glyoxalase activity forces immediate spontaneous decomposition of hemithioacetals due to the shift in equilibrium position. This spontaneous decomposition of hemithioacetals could be mistaken for deglycase activity of DJ-1. Furthermore, we demonstrate that higher initial concentrations of hemithioacetals are associated with lower rates of DJ-1-mediated conversion of MGO, ruling out the possibility that hemithioacetals are DJ-1 substrates. Experiments with CRISPR/Cas-generated DJ-1-knockout HEK293 cells revealed that DJ-1 does not protect against acute MGO toxicity or carboxymethylation of lysine residues in cells. Combined, our results suggest that DJ-1 does not possess protein deglycase activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901308PMC
http://dx.doi.org/10.1074/jbc.RA119.011237DOI Listing

Publication Analysis

Top Keywords

deglycase activity
12
dj-1
9
activity dj-1
8
fast equilibrium
8
equilibrium hemithioacetals
8
hemithioacetals hemiaminals
8
free mgo
8
spontaneous decomposition
8
decomposition hemithioacetals
8
hemithioacetals
7

Similar Publications

Background: DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson's disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Radiation-induced intestinal injury is a common complication of radiotherapy for abdominal and pelvic malignancies. Due to its rapid proliferation, the small intestine is particularly sensitive to radiation, making it a critical factor limiting treatment. Ferulic acid (FA), a derivative of cinnamic acid, exhibits antioxidant, anti-inflammatory, and anti-radiation properties.

View Article and Find Full Text PDF

Peptide Activator Stabilizes DJ-1 Structure and Enhances Its Activity.

Int J Mol Sci

October 2024

Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan.

DJ-1 is a vital enzyme involved in the maintenance of mitochondrial health, and its mutation has been associated with an increased risk of Parkinson's disease (PD). Effective regulation of DJ-1 activity is essential for the well-being of mitochondria, and DJ-1 is thus a potential target for PD drug development. In this study, two peptides (EEMETIIPVDVMRRA and SRDVVICPDA) were utilized with the aim of enhancing the activity of DJ-1.

View Article and Find Full Text PDF

Mesenchymal stromal cells deliver HS-enhanced Nrf2 via extracellular vesicles to mediate mitochondrial homeostasis for repairing hypoxia-ischemia brain damage.

Free Radic Biol Med

November 2024

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China. Electronic address:

Article Synopsis
  • Mesenchymal stromal cells (MSCs) are being investigated for their potential to treat neurological diseases through their extracellular vesicles (EVs), particularly in conditions of hypoxia-ischemia (HI) brain damage.
  • In this study, modified EVs from MSCs preconditioned with NaHS reduced oxidative stress and improved mitochondrial function in HI mice when delivered intranasally, compared to regular EVs.
  • The mechanism involved the upregulation of the Nrf2 protein, which was loaded into EVs, leading to enhanced delivery of this antioxidant to neurons, and the research shows that knocking down Nrf2 in MSCs weakened the therapeutic effects of HS-EVs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!