The aim of this study was to evaluate the influence of tea tree oil (TTO) and "Mentha of Pancalieri" essential oil (MPP) on intracellular killing of often resistant to conventional drugs, by polymorphonuclear leucocytes (PMNs). Intracellular killing was investigated by incubating yeasts and PMNs with essential oils (EOs) at 1/4 and 1/8 × MIC (Minimal Inhibitory Concentration), in comparison with anidulafungin, used as a reference drug. Killing values were expressed as Survival Index (SI) values. The cytotoxicity of EOs was evaluated by 3-[4,-5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Both EOs were more efficaceous at 1/8 × MIC than 1/4 × MIC, with killing values higher than observed in EO-free systems and in presence of anidulafungin, indicating that the decreasing concentrations did not cause lower candidacidal activity. This better activity at 1/8 × MIC is probably due to the EOs' toxicity at 1/4 × MIC, suggesting that at higher concentrations EOs might interfere with PMNs functionality. TTO and MPP at 1/8 × MIC significantly increased intracellular killing by PMNs through their direct action on the yeasts (both EOs) or on phagocytic cells (MPP), suggesting a positive interaction between EOs and PMNs to eradicate intracellular . These data showed a promising potential application of TTO and "Mentha of Pancalieri" EO as natural adjuvants in infection management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864523 | PMC |
http://dx.doi.org/10.3390/molecules24213824 | DOI Listing |
Antibiotics (Basel)
January 2025
Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam 612001, India.
Multidrug-resistant infections pose a critical challenge to healthcare systems, particularly in nosocomial settings. This drug-resistant bacterium forms biofilms and produces an array of virulent factors regulated by quorum sensing. In this study, metal-tolerant bacteria were isolated from a metal-contaminated site and screened for their ability to synthesize multifunctional nanocomposites (NCs).
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India.
Mushrooms, being a source of therapeutically active compounds, are of great interest to researchers due to their historical usage in traditional therapies and the significant role that natural products have played in the development of contemporary medications. Lentinus polychrous is one underutilized mushroom species collected from the laterites of West Bengal, India. Our study aims toward its taxonomic validation, deciphering the secondary metabolic fingerprint, and testing its efficiency in countering many clinical issues, including oxidative stress, growing microbial drug resistance, and cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12311, Egypt.
Chicory species, particularly Cichorium endive Supp. Pumillum, also, known as Egyptian chicory, are globally recognized for their rich content of bioactive secondary metabolites such as flavonoids and phenolics. These metabolites are highly valued for their pharmaceutical, dietary, and commercial applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-900 Fortaleza, CE, Brazil. Electronic address:
The ongoing problem of an increasing resistance of Candida spp. to available antifungals, has made it necessary the search for new therapeutic alternatives. The aim of this work was to develop a microsphere based on Caesalpinia ferrea galactomannan and Spondias purpurea L.
View Article and Find Full Text PDFJ Microbiol Immunol Infect
December 2024
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:
Background: Aeromonas infections pose a significant threat associated with high mortality rates. This study investigates the potential of mitomycin C (MMC), an anticancer drug, as a novel antimicrobial agent against Aeromonas infections.
Methods: We evaluated the minimum inhibitory concentrations (MICs) of MMC and antibiotics against clinical Aeromonas isolates using broth microdilution.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!