Orai1 plays a major role in store-operated Ca entry (SOCE) in triple-negative breast cancer (TNBC) cells. This channel is inactivated via different mechanisms, including protein kinase C (PKC) and protein kinase A (PKA)-dependent phosphorylation at Ser-27 and Ser-30 or Ser-34, respectively, which shapes the Ca responses to agonists. The Ca calmodulin-activated adenylyl cyclase type 8 (AC8) was reported to interact directly with Orai1, thus mediating a dynamic interplay between the Ca- and cyclic adenosine monophosphate (cAMP)-dependent signaling pathways. Here, we show that the breast cancer cell lines MCF7 and MDA-MB-231 exhibit enhanced expression of Orai1 and AC8 as compared to the non-tumoral breast epithelial MCF10A cell line. In these cells, AC8 interacts with the Orai1α variant in a manner that is not regulated by Orai1 phosphorylation. AC8 knockdown in MDA-MB-231 cells, using two different small interfering RNAs (siRNAs), attenuates thapsigargin (TG)-induced Ca entry and also Ca influx mediated by co-expression of Orai1 and the Orai1-activating small fragment (OASF) of STIM1 (stromal interaction molecule-1). Conversely, AC8 overexpression enhances SOCE, as well as Ca entry, in cells co-expressing Orai1 and OASF. In MDA-MB-231 cells, we found that AC8 overexpression reduces the Orai1 phosphoserine content, thus suggesting that AC8 interferes with Orai1 serine phosphorylation, which takes place at residues located in the AC8-binding site. Consistent with this, the subset of Orai1 associated with AC8 in naïve MDA-MB-231 cells is not phosphorylated in serine residues in contrast to the AC8-independent Orai1 subset. AC8 expression knockdown attenuates migration of MCF7 and MDA-MB-231 cells, while this maneuver has no effect in the MCF10A cell line, which is likely attributed to the low expression of AC8 in these cells. We found that AC8 is required for FAK (focal adhesion kinase) phosphorylation in MDA-MB-231 cells, which might explain its role in cell migration. Finally, we found that AC8 is required for TNBC cell proliferation. These findings indicate that overexpression of AC8 in breast cancer MDA-MB-231 cells impairs the phosphorylation-dependent Orai1 inactivation, a mechanism that might support the enhanced ability of these cells to migrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893434PMC
http://dx.doi.org/10.3390/cancers11111624DOI Listing

Publication Analysis

Top Keywords

mda-mb-231 cells
24
breast cancer
16
ac8
13
orai1
12
cells
12
cells ac8
12
adenylyl cyclase
8
cyclase type
8
impairs phosphorylation-dependent
8
phosphorylation-dependent orai1
8

Similar Publications

This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).

View Article and Find Full Text PDF

This study evaluates the antioxidant, anti-inflammatory and anticancer activities of camphor, menthol and their equimolar combination. In silico toxicity analysis confirmed the absence of toxic effects for both compounds. Antioxidant activity, assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, revealed a synergistic effect of the equimolar combination with IC50 values of 10.

View Article and Find Full Text PDF

Cardamonin anticancer effects through the modulation of the tumor immune microenvironment in triple-negative breast cancer cells.

Am J Cancer Res

December 2024

Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.

The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.

View Article and Find Full Text PDF

In this study, the copper(II) complex [Cu(chromoneTSC)Cl]•0.5HO•0.0625CHOH (where chromoneTSC = -Ethyl-2-((4-oxo-4H-chromen-3-yl)methylene)-hydrazinecarbothioamide) was synthesized and characterized; then used to carry out studies in combination with berberine chloride (BBC).

View Article and Find Full Text PDF

Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!