The continuous growth of rodent incisors is ensured by clusters of mesenchymal and epithelial stem cells that are located at the posterior part of these teeth. Genetic lineage tracing studies have shown that dental epithelial stem cells (DESCs) are able to generate all epithelial cell populations within incisors during homeostasis. However, it remains unclear whether these cells have the ability to adopt alternative fates in response to extrinsic factors. Here, we have studied the plasticity of DESCs in the context of mammary gland regeneration. Transplantation of DESCs together with mammary epithelial cells into the mammary stroma resulted in the formation of chimeric ductal epithelial structures in which DESCs adopted all the possible mammary fates including milk-producing alveolar cells. In addition, when transplanted without mammary epithelial cells, DESCs developed branching rudiments and cysts. These in vivo findings demonstrate that when outside their niche, DESCs redirect their fates according to their new microenvironment and thus can contribute to the regeneration of non-dental tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830078 | PMC |
http://dx.doi.org/10.3390/cells8101302 | DOI Listing |
Int J Mol Sci
December 2024
Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan.
Recently, it has been reported that mesenchymal stem cell (MSC)-derived humoral factors promote skin wound healing. As these humoral factors are transiently stored in cytoplasm, we collected them as part of the cell extracts from MSCs (MSC-ext). This study aimed to investigate the effects of MSC-ext on skin wound healing.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.
View Article and Find Full Text PDFLife (Basel)
November 2024
Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland.
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs).
View Article and Find Full Text PDFCells
December 2024
Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.
Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We have previously reported the isolation and characterization of placenta-derived decidua basalis mesenchymal stem cells (DBMSCs), which demonstrated higher levels of pro-migratory and anti-apoptotic genes, indicating potential anti-cancer effects.
View Article and Find Full Text PDFCells
December 2024
Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK.
Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!