CDK12 Activity-Dependent Phosphorylation Events in Human Cells.

Biomolecules

Department of Biochemistry, Duke Med. Ctr., Durham, NC 27710, USA.

Published: October 2019

We asked whether the C-terminal repeat domain (CTD) kinase, CDK12/CyclinK, phosphorylates substrates in addition to the CTD of RPB1, using our CDK12 HeLa cell line to investigate CDK12 activity-dependent phosphorylation events in human cells. Characterizing the phospho-proteome before and after selective inhibition of CDK12 activity by the analog 1-NM-PP1, we identified 5,644 distinct phospho-peptides, among which were 50 whose average relative amount decreased more than 2-fold after 30 min of inhibition (none of these derived from RPB1). Half of the phospho-peptides actually showed >3-fold decreases, and a dozen showed decreases of 5-fold or more. As might be expected, the 40 proteins that gave rise to the 50 affected phospho-peptides mostly function in processes that have been linked to CDK12, such as transcription and RNA processing. However, the results also suggest roles for CDK12 in other events, notably mRNA nuclear export, cell differentiation and mitosis. While a number of the more-affected sites resemble the CTD in amino acid sequence and are likely direct CDK12 substrates, other highly-affected sites are not CTD-like, and their decreased phosphorylation may be a secondary (downstream) effect of CDK12 inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844070PMC
http://dx.doi.org/10.3390/biom9100634DOI Listing

Publication Analysis

Top Keywords

cdk12
8
cdk12 activity-dependent
8
activity-dependent phosphorylation
8
phosphorylation events
8
events human
8
human cells
8
cells asked
4
asked c-terminal
4
c-terminal repeat
4
repeat domain
4

Similar Publications

High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.

View Article and Find Full Text PDF

Advances in Structural Types and Pharmacochemistry of CDK12 Inhibitors.

Med Chem

January 2025

Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, P.R. China.

Cyclin-Dependent Kinase (CDK) 12 is a member of the 20-membered CDK family (CDK1-20) and plays a vital role in regulating gene transcription, mRNA splicing, translation, cell cycle, and repair of DNA damage. CDK12 is an emerging therapeutic target due to its role in regulating the transcription of DNA Damage Response (DDR) genes in Cyclin-Dependent Kinase (CDK). However, the development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13.

View Article and Find Full Text PDF

Background And Objective: Selection of patients harboring mutations in homologous recombination repair (HRR) genes for treatment with a PARP inhibitor (PARPi) is challenging in metastatic castration-resistant prostate cancer (mCRPC). To gain further insight, we quantitatively assessed the differential efficacy of PARPi therapy among patients with mCRPC and different HRR gene mutations.

Methods: This living meta-analysis (LMA) was conducted using the Living Interactive Evidence synthesis framework.

View Article and Find Full Text PDF

Background: Lu-prostate-specific membrane antigen (PSMA)-617 (LuPSMA) is a radionuclide therapy approved for patients with PSMA-avid metastatic castrate-resistant prostate cancer (mCRPC). We evaluated whether alterations in the DNA damage repair (DDR) pathway were associated with outcomes to LuPSMA.

Patients And Methods: We identified an institutional cohort of men (n = 134) treated with ≥2 cycles of LuPSMA who had panel-based germline and/or tumor genomic sequencing.

View Article and Find Full Text PDF

Impacts of genomic alterations on the efficacy of HER2-targeted antibody-drug conjugates in patients with metastatic breast cancer.

J Transl Med

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.

Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!