is recommended for the treatment of gastrointestinal disorders and to reduce hypercholesterolemia in ethno-medicinal practice. To perform a top-down study that could give some insight into the molecular basis of these bioactivities, decoctions from leaves were prepared and the compounds were identified by liquid chromatography-high resolution tandem mass spectrometry (LC-MS/MS). Secoiridoids glycosides, like gentiopicroside and sweroside, and several xanthones, such as di-hydroxy-dimethoxyxanthone, were identified. Following some of the bioactivities previously ascribed to , we have studied its antioxidant capacity and the ability to inhibit acetylcholinesterase (AChE) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Significant antioxidant activities were observed, following three assays: free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction; lipoperoxidation; and NO radical scavenging capacity. The AChE and HMGR inhibitory activities for the decoction were also measured (56% at 500 μg/mL and 48% at 10 μg/mL, respectively). Molecular docking studies indicated that xanthones are better AChE inhibitors than gentiopicroside, while this compound exhibits a better shape complementarity with the HMGR active site than xanthones. To the extent of our knowledge, this is the first report on AChE and HMGR activities by decoctions, in a top-down analysis, complemented with molecular docking, which aims to understand, at the molecular level, some of the biological effects ascribed to infusions from this plant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832739 | PMC |
http://dx.doi.org/10.3390/molecules24203795 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!