A close relation between microRNA-151a-3p (miR-151a-3p) and nasopharyngeal carcinoma (NPC) has been reported, however, the molecular mechanism is still unclear. The aim of the present study was to explore the mechanism in the promotion of miR-151a-3p to NPC progression. The levels of miR-151-3p in several NPC cell lines were detected in order to screen an experimental cell line. MiR-151a-3p mimic and inhibitor were constructed and transfected into 5-8F cells and cell proliferation were detected by Cell Counting Kit-8 (CCK-8). The apoptosis rate, cell migration and invasion were determined by flow cytometry, wound healing and Transwell assays. The predicted target was further verified by luciferase reporter assay. Real-time quantification-PCR and Western blot were carried out for mRNA and protein level analysis. Tumor protein p53 was co-transfected to verify the functions of miR-151a-3p. The miR-151a-3p level in NPC tissues was much higher than that in adjacent tissues. After transfecting cells with miR-151a-3p mimic, the cell proliferation and patients' survival rate were much increased, and this was accompanied by the increase in B-cell lymphoma 2 (Bcl-2) and decreases in Bax and cleaved caspase-3 (P<0.01). Moreover, the migration rate and number of invaded cells were also remarkably increased, however, the miR-151a-3p inhibitor had opposite effects on the 5-8F cells. Noticeably, p53 was revealed as a potential target of miR-151a-3p. Co-transfection of P53 could partially reverse the promotive effects of miR-151a-3p on NPC cell progression. Our data indicated that blocking p53 expression and mediated signal pathways contribute to the positive effects of miR-151a-3p on NPC cell proliferation, migration and invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822577 | PMC |
http://dx.doi.org/10.1042/BSR20191357 | DOI Listing |
Front Biosci (Schol Ed)
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs).
Methods: DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 , rs547025 rs2456181 , rs7907606 , , rs58415480 , rs7986407 , and rs72709458 .
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Front Biosci (Landmark Ed)
December 2024
Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.
The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Gynecology, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng People's Hospital, 048026 Jincheng, Shanxi, China.
Background: Endometriosis is a complicated and enigmatic disease that significantly diminishes the quality of life for women affected by this condition. Increased levels of human telomerase reverse transcriptase () mRNA and telomerase activity have been found in the endometrium of these patients. However, the precise function of TERT in endometriosis and the associated biological mechanisms remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!