Semimetal or Semiconductor: The Nature of High Intrinsic Electrical Conductivity in TiS.

J Phys Chem Lett

Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute, Troy , New York 12180 , United States.

Published: November 2019

As an intensively studied electrode material for secondary batteries, TiS is known to exhibit high electrical conductivity without extrinsic doping. However, the origin of this high conductivity, either being a semimetal or a heavily self-doped semiconductor, has been debated for several decades. Here, combining quasi-particle GW calculations, density functional theory (DFT) study on intrinsic defects, and scanning tunneling microscopy/spectroscopy (STM/STS) measurements, we conclude that stoichiometric TiS is a semiconductor with an indirect band gap of about 0.5 eV. The high conductivity of TiS is therefore caused by heavy self-doping. Our DFT results suggest that the dominant donor defect that is responsible for the self-doping under thermal equilibrium is Ti interstitial, which is corroborated by our STM/STS measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b02710DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
8
conductivity tis
8
high conductivity
8
stm/sts measurements
8
semimetal semiconductor
4
semiconductor nature
4
high
4
nature high
4
high intrinsic
4
intrinsic electrical
4

Similar Publications

Per- and polyfluoroalkyl substances (PFAS) are present in a variety of products that are disposed in landfills as waste and end up in landfill leachate which cause severe problems. The primary aim of this study was to detect PFAS in generated leachate in different sections of a process and disposal complex (called Aradkuh) located in Tehran, Iran. Due to techno economic limitations of measuring PFAS in Iran and easiness of measuring physicochemical parameters to determine PFAS concentration as well as better understanding of the mechanisms of these substances releases from landfills, this research aimed to evaluate the potential relationship between these parameters in landfill leachate.

View Article and Find Full Text PDF

Lignocellulose nanofiber-enhanced hydrogel electrolytes with lignin-Al in metal-based neutral deep eutectic solvent for flexible supercapacitors.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

The mechanical flexibility and high conductivity of hydrogel electrolytes are crucial for their application in supercapacitors. In this study, we developed hydrogel electrolyte based on lignocellulose nanofibers (LCNFs) through nanofibrillation and self-catalytic gelation in a glycerinum/choline chloride/aluminum chloride hexahydrate (Gly/ChCl/AlCl·6HO) metal-based neutral deep eutectic solvent (DES) system. The lignin-Al self-catalytic mechanism offered an eco-friendly and sustainable method for synthesizing hydrogel electrolytes, while enhancing their ionic conductivity.

View Article and Find Full Text PDF

Thermoelectric (TE) devices recycle high-temperature waste-heat efficiently, but waste-heat below sub-250 °C remains uncaptured. As promoting full autonomy for the Internet of Things (IoT), we present a TE generator using multilayered pseudo--type GaN/TiN/GaN and -type TiO/TiN/TiO TE one-leg devices, where heterozygous of outer/inner layers demonstrates the functions of a colossal Seebeck coefficient ( = +15,000 μV K) with phonon-assist hopping, controlling by the porosity for reducing thermal conductivity (κ), a high electric conductivity (σ) with reducing κ by outer layers, and σ- coexistence over singular curve by the asymmetric electrode configuration. is elucidated hopping among inner grains and the space charge (SC) grain boundary (GB) of 100 μm regions within Debye length.

View Article and Find Full Text PDF

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

Low humidity detection down to the parts per million level is urgently demanded in various industrial applications. The hardly detected tiny electrical signal variations caused by a very small amount of water adsorption are one of the intrinsic reasons that restrain the detection limit of the humidity sensors. Herein, a carbon-based field-effect transistor (FET) humidity sensor utilizing adsorbed water as the dual function of a sensing gate and analyte was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!