Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mobile health (mHealth) technology takes advantage of smartphone features to turn them into research tools, with the potential to reach a larger section of the population in a cost-effective manner, compared with traditional epidemiological methods. Although mHealth apps have been widely implemented in chronic diseases and psychology, their potential use in the research of vector-borne diseases has not yet been fully exploited.
Objective: This study aimed to assess the usability and feasibility of The Tick App, the first tick research-focused app in the United States.
Methods: The Tick App was designed as a survey tool to collect data on human behaviors and movements associated with tick exposure while engaging users in tick identification and reporting. It consists of an enrollment survey to identify general risk factors, daily surveys to collect data on human activities and tick encounters (Tick Diaries), a survey to enter the details of tick encounters coupled with tick identification services provided by the research team (Report a Tick), and educational material. Using quantitative and qualitative methods, we evaluated the enrollment strategy (passive vs active), the user profile, location, longitudinal use of its features, and users' feedback.
Results: Between May and September 2018, 1468 adult users enrolled in the app. The Tick App users were equally represented across genders and evenly distributed across age groups. Most users owned a pet (65.94%, 962/1459; P<.001), did frequent outdoor activities (recreational or peridomestic; 75.24%, 1094/1454; P<.001 and 64.58%, 941/1457; P<.001, respectively), and lived in the Midwest (56.55%, 824/1457) and Northeast (33.0%, 481/1457) regions in the United States, more specifically in Wisconsin, southern New York, and New Jersey. Users lived more frequently in high-incidence counties for Lyme disease (incidence rate ratio [IRR] 3.5, 95% CI 1.8-7.2; P<.001) and in counties with cases recently increasing (IRR 1.8, 95% CI 1.1-3.2; P=.03). Recurring users (49.25%, 723/1468) had a similar demographic profile to all users but participated in outdoor activities more frequently (80.5%, 575/714; P<.01). The number of Tick Diaries submitted per user (median 2, interquartile range [IQR] 1-11) was higher for older age groups (aged >55 years; IRR 3.4, 95% CI 1.5-7.6; P<.001) and lower in the Northeast (IRR[NE] 0.4, 95% CI 0.3-0.7; P<.001), whereas the number of tick reports (median 1, IQR 1-2) increased with the frequency of outdoor activities (IRR 1.5, 95% CI 1.3-1.8; P<.001).
Conclusions: This assessment allowed us to identify what fraction of the population used The Tick App and how it was used during a pilot phase. This information will be used to improve future iterations of The Tick App and tailor potential tick prevention interventions to the users' characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913724 | PMC |
http://dx.doi.org/10.2196/14769 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!