Background: Although the mouse is widely used to model human lung development, function, and disease, our understanding of the molecular mechanisms involved in alveolarization of the peripheral lung is incomplete. Recently, the Molecular Atlas of Lung Development Program (LungMAP) was funded by the National Heart, Lung, and Blood Institute to develop an integrated open access database (known as BREATH) to characterize the molecular and cellular anatomy of the developing lung. To support this effort, we designed detailed anatomic and cellular ontologies describing alveolar formation and maturation in both mouse and human lung.
Description: While the general anatomic organization of the lung is similar for these two species, there are significant variations in the lung's architectural organization, distribution of connective tissue, and cellular composition along the respiratory tract. Anatomic ontologies for both species were constructed as partonomic hierarchies and organized along the lung's proximal-distal axis into respiratory, vascular, neural, and immunologic components. Terms for developmental and adult lung structures, tissues, and cells were included, providing comprehensive ontologies for application at varying levels of resolution. Using established scientific resources, multiple rounds of comparison were performed to identify common, analogous, and unique terms that describe the lungs of these two species. Existing biological and biomedical ontologies were examined and cross-referenced to facilitate integration at a later time, while additional terms were drawn from the scientific literature as needed. This comparative approach eliminated redundancy and inconsistent terminology, enabling us to differentiate true anatomic variations between mouse and human lungs. As a result, approximately 300 terms for fetal and postnatal lung structures, tissues, and cells were identified for each species.
Conclusion: These ontologies standardize and expand current terminology for fetal and adult lungs, providing a qualitative framework for data annotation, retrieval, and integration across a wide variety of datasets in the BREATH database. To our knowledge, these are the first ontologies designed to include terminology specific for developmental structures in the lung, as well as to compare common anatomic features and variations between mouse and human lungs. These ontologies provide a unique resource for the LungMAP, as well as for the broader scientific community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814058 | PMC |
http://dx.doi.org/10.1186/s13326-019-0209-1 | DOI Listing |
Mol Biol Evol
January 2025
Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.
View Article and Find Full Text PDFDiabetes
January 2025
William Harvey Research Institute, Barts Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK.
Diabetes mellitus (DM) leads to a more rapid development of DM cardiomyopathy (dbCM) and progression to heart failure in women than men. Combination of high-fat diet (HFD) and freshly-injected streptozotocin (STZ) has been widely used for DM induction, however emerging data shows that anomer-equilibrated STZ produces an early onset and robust DM model. We designed a novel protocol utilising a combination of multiple doses of anomer-equilibrated STZ injections and HFD to develop a stable murine DM model featuring dbCM analogous to humans.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Emergency, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.
View Article and Find Full Text PDFJ Exp Med
March 2025
Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.
View Article and Find Full Text PDFRedox Rep
December 2025
Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!