Tumor-infiltrating T lymphocytes highly express programmed cell death protein-1 (PD-1) that interacts with its ligand, programmed cell death protein ligand-1 (PD-L1) on tumors. PD-1/PD-L1 interactions cause functional exhaustion of effector T cells and impair antitumor immunity, allowing tumors to escape immune surveillance. In addition to such extrinsic interactions, tumors proliferate by transmitting intrinsic PD-L1 signals via the mTOR pathway. Here, we simultaneously silenced PD-1 and PD-L1 expressions on CTLs and colon tumors using PD-1 siRNA/PD-L1 siRNA-loaded PLGA nanoparticles and investigated functional activation of tumor-specific CTLs. When compared to a single PD-1 silencing on CTLs or a single PD-L1 silencing on tumors, cosilencing of PD-1/PD-L1 on CTLs and tumors more efficiently promoted effector functions of tumor-specific CTLs. Moreover, PD-L1-silenced tumors inhibited mTOR signaling and showed an antiproliferative response independent of the adaptive immune response. Ultimately, systemic administration of PD-1 and PD-L1 siRNA via PLGA nanoparticles restored the effector functions of tumor-specific CTLs in MC38 tumor-bearing mice. Compared with antitumor effects of single silencing of PD-1 or PD-L1 alone, cosilencing of PD-1 and PD-L1 showed more significant tumor growth suppression and long-term tumor inhibition in colon cancer. Thus, this study provides an efficient therapeutic strategy for achieving immunotherapy in colon cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00826DOI Listing

Publication Analysis

Top Keywords

pd-1 pd-l1
16
plga nanoparticles
12
programmed cell
12
cell death
12
tumor-specific ctls
12
death protein-1
8
tumor growth
8
effector functions
8
functions tumor-specific
8
colon cancer
8

Similar Publications

Background: Immune checkpoint inhibitors play an important role in the treatment of solid tumors, but the currently used immune checkpoint inhibitors targeting programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4) show limited clinical efficacy in many breast cancers. B7H3 has been widely reported as an immunosuppressive molecule, but its immunological function in breast cancer patients remains unclear.

Methods: We analyzed the expression of B7H3 in breast cancer samples using data from the Cancer Genome Atlas Program (TCGA) and the Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) are effective in a subset of patients with metastatic solid tumors. However, the patients who would benefit most from ICIs in biliary tract cancer (BTC) are still controversial.

Materials And Methods: We molecularly characterized tissues and blood from 32 patients with metastatic BTC treated with the ICI pembrolizumab as second-line therapy.

View Article and Find Full Text PDF

Cervical cancer (CC) is a common malignant tumour of the female reproductive system that is highly harmful to women's health. The efficacy of traditional surgery, radiotherapy and chemotherapy is limited, especially for recurrent and metastatic CC. With continuous progress in diagnostic and treatment technology, immunotherapy has become a new approach for treating CC and has become a new therapy for recurrent and metastatic CC.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) is a deadly subtype of breast cancer with limited treatment options. Currently, programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors have become the first choice for breast cancer immunotherapies. Despite paclitaxel being considered a cornerstone drug in breast cancer treatment, the effectiveness, safety, and optimal drug selection for its combination with PD-1/PD-L1 inhibitors remain uncertain.

View Article and Find Full Text PDF

Interplay between CD28 and PD-1 in T cell immunotherapy.

Vascul Pharmacol

December 2024

Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:

Immune checkpoint therapy targeting the PD-1/PD-L1 axis has revolutionized the treatment of solid tumors. However, T cell exhaustion underpins resistance to current anti-PD-1 therapies, resulting in lower response rates in cancer patients. CD28 is a T cell costimulatory receptor that can influence the PD-1 signalling pathway (and vice versa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!