Current gaps in the development of sustainable processes include a lack of strategies to systematically identify and optimize the formation of new products. The dehydration of hexoses to 5-hydroxymethylfurfural (HMF) is a particularly widely studied process. In an attempt to identify a new high-selectivity conversion of glucose, quantitative NMR spectroscopy is used to screen conditions that have been reported to yield high conversions of glucose but low formation of HMF. In this manner, an olefinic six-carbon byproduct is identified. By adding water, selectivity for the compound was nearly tripled relative to previous reports. The detection of high-yielding side reactions in the formation of HMF is remarkable, considering how extensively HMF formation has been studied. High selectivity for the acyclic pathway allows hitherto unobserved intermediates in this pathway to be identified by using in situ NMR spectroscopy. An additional, presumably cyclic, pathway contributes to HMF formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201902322 | DOI Listing |
J Phys Chem A
November 2024
Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan.
Characterization of carbohydrate structures using mass spectrometry is a challenging task. Understanding the dissociation mechanisms of carbohydrates in the gas phase is crucial for characterizing these structures through tandem mass spectrometry. In this study, we investigated the collision-induced dissociation (CID) of glucose, galactose, and mannose in their linear forms, as well as the linear forms of hexose at the reducing end of 1-6 linked disaccharides, using quantum chemistry calculations and tandem mass spectrometry.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA. Electronic address:
The methionine/glucose (Met/Glc) and methionine/glucose-derived Amadori rearrangement product (MG-ARP) models were established to analyze their differences in flavor profiles and aroma potentiality. The principal component analysis revealed the advantage of MG-ARP in the formation of low temperature-induced processing flavor. MG-ARP exhibited superior potential in the rapid formation and high intensity of processed flavor than the Met/Glc except for the inefficiency in pyrazine production.
View Article and Find Full Text PDFJ Biotechnol
November 2024
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea. Electronic address:
Levulinic acid(LA) is produced through acid-catalyzed hydrolysis and dehydration of lignocellulosic biomass. It is a key platform chemical used as an intermediate in various industries including biofuels, cosmetics, pharmaceuticals, and polymers. Traditional LA production uses chemical conversion, which requires high temperatures and pressures, strong acids, and produces undesirable side reactions, repolymerization products, and waste problems Therefore, we designed an integrated process to produce LA from glucose through metabolic engineering of Pseudomonas putida KT2440.
View Article and Find Full Text PDFSensors (Basel)
July 2024
Department of Automation Engineering, National Formosa University, No. 64, Wenhua Rd., Huwei 63201, Yunlin, Taiwan.
This study presents a portable, low-cost, point-of-care (POC) system for the simultaneous detection of blood glucose and hematocrit. The system consists of a disposable origami microfluidic paper-based analytical device (μPAD) for plasma separation, filtration, and reaction functions and a 3D-printed cassette for hematocrit and blood glucose detection using a smartphone. The origami μPAD is patterned using a cost-effective label printing technique instead of the conventional wax printing method.
View Article and Find Full Text PDFJ Pediatr Surg
October 2024
Instituto da Criança e do Adolescente do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647, Cerqueira César, São Paulo, 05403-000, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!