Background: Cell-based influenza vaccines can solve the problem of the frequent occurrence of egg adaptation-associated antigenic changes observed in egg-based vaccines. Seed viruses for cell-based vaccines can be prepared from clinical specimens by cell culture; however, clinical samples risk harboring respiratory viruses other than influenza virus. Therefore, it is necessary to investigate the patterns of co-infection in clinical samples and explore whether cell culture technology can selectively propagate influenza viruses from samples containing other respiratory viruses.
Methods: A total of 341 clinical specimens were collected from patients with influenza or influenza-like illness and analyzed by ResPlex II assay to detect 18 respiratory viruses. The patterns of co-infection were statistically analyzed with Fisher's exact test. The samples with double or triple infections were passaged in suspension MDCK cells (MDCK-S), adherent MDCK cells (MDCK-A), and LLC-MK2D cells. Cell-passaged samples were analyzed by ResPlex II assay again to investigate whether each cell line could amplify influenza viruses and eliminate other respiratory viruses.
Results: Double infections were detected in 8.5% and triple infections in 0.9% of the collected clinical specimens. We identified four pairs of viruses with significant correlation. For all samples with double and triple infection, MDCK-S and MDCK-A could selectively propagate influenza viruses, while eliminating all contaminating viruses. In contrast, LLC-MK2D showed lower isolation efficiency for influenza virus and higher isolation efficiency for coxsackievirus/echovirus than MDCK-S and MDCK-A.
Conclusions: Both MDCK-S and MDCK-A are considered suitable for the preparation of influenza vaccine seed viruses without adventitious agents or egg-adaptation mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040968 | PMC |
http://dx.doi.org/10.1111/irv.12694 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!