Thermal (T) and ultrasound (US) pasteurization processes were applied to apple juice and the phenolic compounds (TPC) were quantified before and after in vitro digestion by HPLC-DAD-ESI-MS, with their bioaccessibility ascertained. Digested samples were analysed for their inhibitory capacity against α-glucosidase. Since some of the compounds exhibit fluorescence, both steady state and time-resolved fluorescence methods were used to investigate the binding to a blood transport protein, human serum albumin (HSA). It was found that processing induced an increase in the TPC content, which was more pronounced when US was applied. In contrast, digestion reduced the TPC content, evening out the overall effect. Still T and US pasteurized juices exhibited a higher quantity of TPC upon digestion as compared to the raw sample. No correlation was found between the TPC content and α-glucosidase inhibition, as the T and US pasteurized juices showed the highest and lowest inhibitory capacities against the enzyme, respectively. This is indicative that other compounds, such as those formed upon thermal treatment, may be involved in the antidiabetic effect of apple juice. The fluorescence study showed that binding occurred to HSA, at slightly different rates for different species present in the US treated extract. Considering energy consumption, US pasteurization is the most power consuming treatment despite its shorter duration. Overall, no univocal indication on the best pasteurization process can be gathered. Thus, it is necessary to define the desired target in order to drive technological interventions by a customized approach.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fo01762cDOI Listing

Publication Analysis

Top Keywords

apple juice
12
tpc content
12
thermal ultrasound
8
ultrasound pasteurization
8
pasteurized juices
8
tpc
5
phenolic content
4
content potential
4
potential bioactivity
4
bioactivity apple
4

Similar Publications

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice.

Food Chem

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China. Electronic address:

This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.

View Article and Find Full Text PDF

The lactic fermentation of fruit and vegetable juices by well-characterised probiotics remains relatively underexplored. We have investigated the stability and impact of KABP051 fermentation on orange, apple, and peach juices by microbiological, physicochemical, and sensory evaluation means. For each fruit juice, three different samples were analysed: original fruit juice without probiotic as blank (B), fruit juice inoculated with 10 CFU/mL of probiotic without fermentation (P), and fruit juice inoculated with 10 CFU/mL of probiotic and fermented at 37 °C for 24 h (PF).

View Article and Find Full Text PDF

Apples are among the most important fruits worldwide and the most consumed fruit in Germany. Due to higher energy and personnel costs, domestic apples are more expensive and thus offer an incentive for mixing with foreign goods. Moreover, imported apples have a higher carbon footprint, which is an obstacle regarding sales in times of climate change.

View Article and Find Full Text PDF

Occurrence of contamination and the reduction and transfer of Alternaria toxins in apples during processing.

Food Res Int

January 2025

Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Article Synopsis
  • Alternaria spp. in apples can produce toxic secondary metabolites that threaten human and animal health, and this study explored the contamination levels and how these toxins are affected by processing methods.
  • Apples showed increased susceptibility to infection at 25 °C, producing six different toxins which did not spread beyond 4 cm from the infection site.
  • Processing methods like juicing and canning impacted toxin levels, with juice transfer rates lower than pomace, and most human exposure through apple products was well within recommended safety limits, suggesting a low dietary risk.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!