Until now, ferroptotic therapeutic strategies remain simple, although ferroptosis has aroused extensive interest owing to its escape from the biocarriers of conventional therapeutic modalities. Herein, we construct a photothermal (PT)- and autophagy-enhanced ferroptotic therapeutic modality based on MnO@HMCuS nanocomposites (HMCMs) for efficient tumor ablation. The HMCMs possess PT-enhanced glutathione (GSH) depletion capability, thereby inducing PT-enhanced ferroptosis via the reinforced inactivation of glutathione peroxidase 4 (GPX4). Thereafter, the GSH-responsed Mn release could generate reactive oxygen species (ROS) by a Fenton-like reaction to reinforce the intracellular oxidative stress for the lipid hydroperoxide (LPO) accumulation in ferroptosis. Additionally, an autophagy promotor rapamycin (Rapa) was loaded into HMCM for sensitizing cells to ferroptosis due to the indispensable role of autophagy in the ferroptosis process. The in vitro and in vivo data demonstrated that the HMCM exhibited superior anticancer effect in human breast cancer models and that the combined therapeutic system afforded the next generation of ferroptotic therapy for combatting malignant tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b16124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!