Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Highly foldable conducting interconnects are fundamental elements for multipurpose flexible electronic circuits, including wearable electronics and biomedical devices. Traditional metalized thin-film interconnects demonstrate stable electronic performances in rigid devices but low deformation tolerance in flexibility. Recently, several remarkable research studies on flexible electronics have been carried out, as interconnect structures of serpentine, wavy, and nanowire networks. However, all of the reported flexible interconnects possess either mechanical instability or fabrication difficulty, which restrict their practical applications. Here, we report a new flexible circuit system, which consists of nanowave structure metal interconnects with highly foldable and large-scale manufactured features. This kind of nanowave interconnects presents both stable and prominent electrical performances under mechanical deformation (down to 0.2 mm bending radius with interconnecting resistance variation less than 10%). Further, a highly flexible paper-like wireless accelerometer based on the nanowave interconnects is fabricated and characterized under several extreme strain situations. Our approach affords a comprehensive direction for constitutional realization of new flexible designs and implements the assembly of next-generation foldable electronic equipment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b15697 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!