Background: Infant videofluoroscopic swallow studies (VFSSs) require clinicians to make determinations about swallowing deficits based on a limited number of fluoroscopically observed swallows. Although airway protection is known to decline throughout a bottle-feed, the paucity of data regarding the timing of this degradation has limited the development of procedural protocols that maximize diagnostic validity.
Objective: We tested the stability of key components of swallow physiology and airway protection at four standardized timepoints throughout the VFSS.
Materials And Methods: Thirty bottle-fed infants with clinical signs of swallow dysfunction underwent VFSS. Fluoroscopy was turned on to allow visualization of five swallows at 0:00, 0:30, 1:30 and 2:30 (minutes:seconds [min:s]). We evaluated swallows for components of swallow physiology (oral bolus hold, initiation of pharyngeal swallow, timing of swallow initiation) and airway protection (penetration, aspiration). We used model-based linear contrasts to test differences in the percentage of swallows with low function component attributes.
Results: All components of swallow physiology exhibited a change throughout the VFSS (P≤0.0005). Changes were characterized by an increase in the number of sucks per swallow (P<0.0001), percentage of swallows with incomplete bolus hold (P=0.0005), delayed initiation of pharyngeal swallow (P<0.0001), delayed timing of swallow initiation (P=0.0004) and bolus airway entry (P<0.0001). These findings demonstrate that infants with dysphagia exhibit a change in swallow physiology throughout the videofluoroscopic swallow exam.
Conclusion: Fluoroscopic visualization that is confined to the initial swallows of the bottle feed limit the exam's diagnostic validity. Developing evidence-based procedural guidelines for infant VFSS execution is crucial for maximizing the exam's diagnostic and treatment yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685400 | PMC |
http://dx.doi.org/10.1007/s00247-019-04527-w | DOI Listing |
Crit Care
December 2024
Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, PhyMedExp, INSERM U1046, CNRS UMR, University of Montpellier, 9214, Montpellier Cedex 5, France.
Background: Ultra-protective ventilation is the combination of low airway pressures and tidal volume (Vt) combined with extra corporeal carbon dioxide removal (ECCOR). A recent large study showed no benefit of ultra-protective ventilation compared to standard ventilation in ARDS (Acute Respiratory Distress Syndrome) patients. However, the reduction in Vt failed to achieve the objective of less than or equal to 3 ml/kg predicted body weight (PBW).
View Article and Find Full Text PDFInflammation
December 2024
Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China.
Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Laboratory Medicine, Hengyang First People's Hospital, Hengyang 421001, China.
Objectives: To investigate the protective effect of the probiotic bacterium K12 (K12) against (Mp) infection in mice.
Methods: Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp.
Acta Biochim Biophys Sin (Shanghai)
December 2024
Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea.
( . ) has long been a part of the human diet and medicine. Although .
View Article and Find Full Text PDFHead Neck
December 2024
Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Evanston, Illinois, USA.
Background: Dysphagia (difficulty swallowing) is a common morbidity resulting from the treatment of head-and-neck squamous-cell carcinoma (HNSCC) due to surgery and chemoradiation. Transoral robotic surgery (TORS) is a minimally invasive surgical technique for the management of HNSCC, which ideally avoids many of the known complications of open surgery. Research describing physiologic swallowing impairment after surgery using videofluoroscopy is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!