AMP-activated protein kinase (AMPK) is an energy-sensing kinase that has emerged as a novel therapeutic target for pain due to its ability to inhibit mechanistic target of rapamycin (mTOR) and mitogen activated protein kinase (MAPK) signaling, two signaling pathways that are linked to pain promotion after injury as well as the development of hyperalgesic priming. MAPK and mTOR signaling are also implicated in chemotherapy induced peripheral neuropathy (CIPN). We conducted a series of experiments to gain further insight into how AMPK activators might best be used to treat pain in both sexes in the setting of CIPN from paclitaxel. We also assessed whether hyperalgesic priming emerges from paclitaxel treatment and if this can be prevented by AMPK targeting. AMPK can be pharmacologically activated indirectly through regulation of upstream kinases like liver kinase B1 (LKB1) or directly using positive allosteric modulators. We used the indirect AMPK activators metformin and narciclasine, both of which have been shown to reduce pain in preclinical models but with much different potencies and different efficacies depending on the sex of the animal. We used the direct AMPK activator MK8722 because it is the most potent and specific such activator described to date. Here, the AMPK activators were used in 2 different treatment paradigms. First the drugs were given concurrently with paclitaxel to test whether they prevent mechanical hypersensitivity. Second the AMPK activators were given after the completion of paclitaxel treatment to test whether they reverse established mechanical hypersensitivity. Consistent with our previously published findings with metformin, narciclasine (1 mg/kg) produced an anti-hyperalgesic effect, preventing paclitaxel-induced neuropathy in outbred mice of both sexes. In contrast to metformin, narciclasine also reversed mechanical hypersensitivity in established CIPN. Both metformin (200 mg/kg) and narciclasine prevented the development of hyperalgesic priming induced by paclitaxel treatment. MK8722 (30 mg/kg) had no effect on mechanical hypersensitivity caused by paclitaxel in either the prevention or reversal treatment paradigms. However, MK8722 did attenuate hyperalgesic priming in male and female mice. We conclude that paclitaxel induces robust hyperalgesic priming that is prevented by AMPK targeting and that narciclasine is a particularly attractive candidate for further development as a CIPN treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804652PMC
http://dx.doi.org/10.1016/j.ynpai.2019.100037DOI Listing

Publication Analysis

Top Keywords

hyperalgesic priming
24
mechanical hypersensitivity
20
ampk activators
20
paclitaxel treatment
12
metformin narciclasine
12
ampk
10
male female
8
female mice
8
protein kinase
8
development hyperalgesic
8

Similar Publications

Article Synopsis
  • Postoperative hyperalgesic priming, made worse by preoperative anxiety, complicates pain management after surgery, and electroacupuncture (EA) may help by targeting multiple biological pathways.
  • This review explores how EA can tackle issues related to preoperative anxiety and postoperative pain chronification by investigating its effects on the body's response systems.
  • EA has shown effectiveness in reducing preoperative anxiety and postoperative pain through mechanisms like reducing inflammation, modulating pain pathways, and improving stress hormone regulation, suggesting it could enhance patient recovery after surgery.
View Article and Find Full Text PDF

Nociceptors with somata in dorsal root ganglia (DRGs) readily switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Spontaneous activity (SA) during this state is present in vivo in rats months after spinal cord injury (SCI) and has been causally linked to SCI pain. Intrinsically generated SA and, more generally, ongoing activity (OA) are induced by various neuropathic conditions in rats, mice, and humans and are retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions.

View Article and Find Full Text PDF

Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation.

View Article and Find Full Text PDF

Chronic pain remains a significant health challenge with limited effective treatments. This study investigates the metabolic changes underlying pain progression and resolution, uncovering a novel compensatory mechanism in sensory neurons. Using the hyperalgesic priming model in male mice, we demonstrate that nerve growth factor (NGF) initially disrupted mitochondrial pyruvate oxidation, leading to acute allodynia.

View Article and Find Full Text PDF

Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy.

J Neurosci

October 2024

Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143

Article Synopsis
  • * Our research on male rats showed that blocking mu-opioid receptors (MOR) decreases pain and the increased sensitivity (priming) associated with common chemotherapy drugs like oxaliplatin and paclitaxel.
  • * Additionally, we discovered that while normal morphine doesn't cause pain sensitivity in healthy rats, it worsens pain in those with chemotherapy-induced nerve damage, highlighting the challenges of opioids for treating this type of neuropathic pain.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!