AKR1A1 is a novel mammalian -nitroso-glutathione reductase.

J Biol Chem

Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44016; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44016; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44016. Electronic address:

Published: November 2019

Oxidative modification of Cys residues by NO results in -nitrosylation, a ubiquitous post-translational modification and a primary mediator of redox-based cellular signaling. Steady-state levels of -nitrosylated proteins are largely determined by denitrosylase enzymes that couple NAD(P)H oxidation with reduction of -nitrosothiols, including protein and low-molecular-weight (LMW) -nitrosothiols (-nitroso-GSH (GSNO) and -nitroso-CoA (SNO-CoA)). SNO-CoA reductases require NADPH, whereas enzymatic reduction of GSNO can involve either NADH or NADPH. Notably, GSNO reductase (GSNOR, ) accounts for most NADH-dependent GSNOR activity, whereas NADPH-dependent GSNOR activity is largely unaccounted for (CBR1 mediates a minor portion). Here, we purified NADPH-coupled GSNOR activity from mammalian tissues and identified aldo-keto reductase family 1 member A1 (AKR1A1), the archetypal mammalian SNO-CoA reductase, as a primary mediator of NADPH-coupled GSNOR activity in these tissues. Kinetic analyses suggested an AKR1A1 substrate preference of SNO-CoA > GSNO. AKR1A1 deletion from murine tissues dramatically lowered NADPH-dependent GSNOR activity. Conversely, GSNOR-deficient mice had increased AKR1A1 activity, revealing potential cross-talk among GSNO-dependent denitrosylases. Molecular modeling and mutagenesis of AKR1A1 identified Arg-312 as a key residue mediating the specific interaction with GSNO; in contrast, substitution of the SNO-CoA-binding residue Lys-127 minimally affected the GSNO-reducing activity of AKR1A1. Together, these findings indicate that AKR1A1 is a multi-LMW-SNO reductase that can distinguish between and metabolize the two major LMW-SNO signaling molecules GSNO and SNO-CoA, allowing for wide-ranging control of protein -nitrosylation under both physiological and pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885624PMC
http://dx.doi.org/10.1074/jbc.RA119.011067DOI Listing

Publication Analysis

Top Keywords

gsnor activity
20
akr1a1
8
primary mediator
8
nadph-dependent gsnor
8
nadph-coupled gsnor
8
activity
7
gsno
6
gsnor
6
reductase
5
sno-coa
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!