Objectives: Remote ischaemic preconditioning (RIPC) is a phenomenon that promotes protection of tissues and organs against ischaemia reperfusion injury. RIPC has been shown to reduce myocardial and renal injury but its effect on arterial stiffness in patients undergoing lower limb digital subtraction angiography (DSA) is unknown. The aim of this study was to evaluate the effect of RIPC on arterial stiffness in patients with peripheral arterial disease (PAD) undergoing lower limb DSA.
Methods: In the RIPC intervention, the blood pressure cuff on the arm was inflated to 200 mmHg or to 20 mmHg above systolic pressure, and in the sham intervention to 20 mmHg. For both, the procedure was repeated for four five minute cycles at five minute intervals between the cycles. Changes in heart rate corrected augmentation index (AIx@75), augmentation index (AIx), carotid femoral pulse wave velocity (PWV), and haemodynamic parameters were measured before and 24 h after DSA.
Results: 111 (RIPC 54, sham 57) patients with symptomatic lower limb PAD scheduled for DSA were randomised. 102 patients (RIPC 47, sham 55) were included in final analysis. RIPC significantly improved AIx (-5.46% in RIPC and -1.45% in sham group; p = .05), but not AIx@75 (-4.88% in RIPC and -1.38% in sham group; p = .07) or PWV (-0.41 m/s in RIPC and -0.27 m/s in sham group; p = .74). In the RIPC group a significant reduction in AIx (p = .002) and AIx@75 (p = .003) was noted after stenting when compared with the sham intervention. AIx (p = .001), AIx@75 (p = .002), mean arterial (p = .01), peripheral (p = .02), and central systolic blood pressure (p = .006) were significantly reduced only in the RIPC group 24 h after DSA.
Conclusion: This study evaluates for the first time the effects of RIPC on arterial stiffness parameters in patients with symptomatic PAD following DSA. RIPC may modulate arterial stiffness following a DSA procedure and is more pronounced in patients after stent placement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejvs.2019.06.004 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA.
The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.
View Article and Find Full Text PDFLife Metab
October 2024
Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Downregulated RhoA/ROCK1/YAP/F-actin axis leads to decreased AoSMC stiffness and promotes AD formation.
View Article and Find Full Text PDFIn Vitro Model
February 2024
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Unlabelled: Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon.
View Article and Find Full Text PDFIntroduction: Several anthropometric indices reflecting cardiometabolic risks have been developed, but the relationship of body composition with arterial stiffness remains unclear. We aimed to determine the interaction between age-related anthropometric changes and progression of arterial stiffness.
Methods: This research analyzed cross-sectional data (N=13,672) and 4-year longitudinal data (N=5,118) obtained from a healthy Japanese population without metabolic disorders.
Lymphat Res Biol
January 2025
Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Warsaw, Poland.
Upper limb lymphedema is the most common complication after breast cancer therapy. Suddenly disturbed lymphatic transport in the affected arm causes tissue fluid accumulation in tissue spaces, limb enlargement, and secondary changes in tissue. Early compression therapy is necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!