U18666A inhibits classical swine fever virus replication through interference with intracellular cholesterol trafficking.

Vet Microbiol

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. Electronic address:

Published: November 2019

The level of cholesterol in host cells has been demonstrated to affect viral infection. Our previous studies showed that cholesterol-rich membrane rafts mediated the entry of classical swine fever virus (CSFV) into PK-15 or 3D4/21 cells, but the role of cholesterol post entry was still not clear. In this study, we found that CSFV replication before fusion was affected when the cholesterol trafficking in infected cells was disrupted using a cholesterol transport inhibitor, U18666A. Our data showed that U18666A affected both the fusion and replication steps in the life cycle of the virus, but not its binding and entry steps. The subsequent experiments confirmed that niemann-pick C1 (NPC1), a lysosomal membrane protein that helps cholesterol to leave the lysosome, was affected by U18666A, which led to the accumulation of cholesterol in lysosomes and inhibition of CSFV replication. Imipramine, a cationic hydrophobic amine similar to U18666A, also inhibited CSFV replication via similar mechanism. Surprisingly, the antiviral effect of U18666A was restored by the histone deacetylase inhibitor (HDACi), Vorinostat, which suggested that HDACi reverted the dysfunction of NPC1, and intra-cellular cholesterol accumulation disappeared and CSFV replicability resumed. Together, these data indicated that CSFV transformed from early endosome and late endosome into lysosome after endocytosis for further replication and that U18666A was a potential drug candidate for anti-pestivirus treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2019.108436DOI Listing

Publication Analysis

Top Keywords

csfv replication
12
classical swine
8
swine fever
8
fever virus
8
cholesterol
8
cholesterol trafficking
8
u18666a
7
replication
6
csfv
6
u18666a inhibits
4

Similar Publications

Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.

View Article and Find Full Text PDF

Identification of NECTIN1 as a novel restriction factor for flavivirus infection.

mBio

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Article Synopsis
  • NECTIN1 is a cell adhesion molecule known mainly for its interaction with herpesviruses, but this study reveals its new role as a barrier against flavivirus infections, specifically BVDV.
  • The researchers found that reducing NECTIN1 levels increased BVDV infections and identified NECTIN1's IgV domain as crucial for its inhibiting function, affecting how BVDV attaches to cells.
  • The study also showed NECTIN1’s broader antiviral activity against several other viruses, highlighting its potential significance as a restriction factor in controlling flavivirus infections.
View Article and Find Full Text PDF

Porcine sapelovirus (PSV) is a new pathogen that negatively impacts the pig industry in China. Affected pigs experience severe diarrhea and even death. Vaccination is used to control disease outbreaks, and sensitive diagnostic methods that can distinguish infected animals from vaccinated animals (DIVA) are essential for monitoring the effectiveness of disease control programs.

View Article and Find Full Text PDF

PRRSV infection inhibits CSFV C-strain replication via GSDMD-mediated pyroptosis.

Vet Microbiol

November 2024

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Classical swine fever virus (CSFV) and porcine productive and respiratory syndrome virus (PRRSV) both are significant infectious pathogens in pigs and pose great threats to the healthy development of the pig industry. PRRSV infection often reduces the antibody level of the CSFV attenuated vaccine and even leads to immune failure. In order to elucidate the potential mechanism of CSFV proliferation inhibition by PRRSV and screen out drugs that enhance the vaccine immune effect, we conducted experiments in the PAM39 cell line that can simultaneously support both PRRSV and CSFV infection.

View Article and Find Full Text PDF

Classical swine fever virus (CSFV) p7 viroporin plays crucial roles in cellular ion balance and permeabilization. The antiviral drug amantadine effectively inhibits viral replication by blocking the activity of CSFV p7 viroporin. However, little information is available for the binding mode of amantadine with CSFV p7 viroporin, due to the lack of a known polymer structure for CSFV p7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!